AQI 分析
1、背景資訊
AOI( Air Quality Index),指空氣質量指數,用來衡量空氣清潔或汙染的程度。值越小,表示空氣質量越好。近年來,因為環境問題,空氣質量也越來越受到人們的重視。我們期望能夠運用資料分析的相關技術,對全國城市空氣質量進行研究與分析,希望能夠解決如下疑問:
- 哪些城市的空氣質量較好/較差?
- 空氣質量在地理位置分佈上,是否具有一定的規律性?
- 城市的空氣質量與是否臨海是否有關?
- 空氣質量主要受哪些因素影響?
- 全國城市空氣質量普遍處於何種水平?
現在獲取了2015年空氣質量指數集。該資料集包含全國主要城市的相關資料以及空氣質量指數。
City |
AQI |
Precipitation |
GDP |
城市 |
空氣質量指數 |
降水量 |
城市生產總值 |
Longitude |
Latitude |
Altitude |
Population Density |
經度 |
緯度 |
海拔高度 |
人口密集度 |
Temperature |
Coastal |
Incineration (10,000ton) |
Green Coverage Rate |
溫度 |
是否臨海 |
焚燒量/10000噸 |
綠化率 |
2、資料分析流程
在進行資料分析之前,我們需要清楚資料分析的基本流程。
3、讀取資料
匯入需要的庫並初始化一些設定。
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import warnings
6 sns.set(style="darkgrid") 7 plt.rcParams["font.family"]="simHei" #用於解決中文顯示不了的問題
8 plt.rcParams["axes.unicode_minus"]=False
9 warnings.filterwarnings("ignore")
載入資料集
4、資料清洗
4.1 缺失值
對於缺失值的處理 。可以使用如下方式:
-
- 刪除缺失值
- 僅適用於缺失數量很少的情況
- 填充缺失值
- 數值變數
- 均值填充
- 中值填充
- 類別變數
- 眾數填充
- 單獨作為一個類別
- 其他
- 數值變數
- 刪除缺失值
先用info()或innull()檢視缺失值。
再用skew()檢視偏度資訊,再畫個圖看看,注意distplot()不支援有空值資料繪製,所以必須先用dropna()將空值剔除。
可以看出,我們的原始資料有點右偏,因為缺失值只有4個,缺失數量很少,可以直接刪除,,但我們這次用了中位數來填充。
4.2 異常值
異常值如何發現?我們有這幾種方法:
-
- describe()
- 箱線圖
- 3σ方式
- 其他相關異常檢測演算法
describe():
呼叫dataframe物件的describe方法,會顯示資料的統計資訊,讓自己瞭解下資料
可以看出GDP、Latitude、PopulationDensity的最大值與較大四分位數的差距異常巨大,存在右偏現象,即存在許多極大的異常值
3σ
3σ即3倍標準差,根據正態分佈的特性,我們可以將3σ之外的資料視為異常值。以GDP為例,畫出GDP的偏度分佈情況:
該資料出現嚴重右偏分佈,也就是說存在很多極大的異常值,通過3σ法獲取這些異常值:
箱線圖
通過箱線圖我們可以很直觀的看見存在很多極大的異常值,怎麼判斷的呢?
箱線圖異常值的判斷依據:
Q1、Q2、Q3分別表示1/4分位數、2/4分位數、3/4分位數,IQR=Q3-Q1
若資料小於Q1-1.5IQR或大於Q3+1.5IQR則為異常值。
找到異常怎麼處理,通常有以下幾種方式:
-
- 刪除異常值(不常用)
- 視為缺失值處理
- 對數轉換(適用於右偏,建模)
- 臨界值替換
- 分箱法離散化處理(分成不同區間對映成離散值)
以對數轉換為例。
對數轉換適用於存在較大異常值的資料,即適用於右偏分佈,不適用於左偏分佈。
4.3 重複值
重複值的處理很簡單,使用duplicated查詢重複值,引數keep有三個值:"first"、False、"last".分別表示顯示第一條、所有、最後一天重複的記錄。
清洗完的資料可以直接匯出。
5 資料分析
空氣質量的好壞有時候決定人的去留,擇校、就業、定居、旅遊等等。
首先來看最好和最壞的幾個城市
5.1 空氣質量最好&最壞的幾個城市
空氣最好的5個城市
先按AQI排序,預設升序,取前5條記錄;x軸上的城市名稱需要旋轉45°,這樣便於檢視。
上圖可以看出,空氣質量好的前5個城市:1.韶關市,2.南平市,3.梅州市,4.基隆市(臺灣省),5.三明市。全是南方城市。
空氣最差的5個城市
上圖可以看出,空氣質量最差的前5個城市: 1.北京市,2.朝陽市,3.保定市,4.錦州市,5.焦作市。全是北方城市。
5.2 全國部分城市的空氣質量
5.2.1 空氣質量等級劃分:
首先我們需要定義一個函式,寫一些if語句,通過AQI的值來判斷空氣質量等級,
這裡需要用apply函式:申請呼叫我們自建的函式,返回值就是自建函式返回值。
從圖中可以看出,我國主要城市的空氣質量主要以一級和二級為主,三級佔一部分,其他佔少數。
5.2.2 空氣質量指數分佈情況
呼叫scatterplot()繪製散點圖,以AQI區分,引數palette是調色,這裡是綠色到紅色。
從圖中可以看出,從地理位置上來講,空氣質量南方城市優於北方城市,西部城市優於東部城市。
5.3 城市的空氣質量與是否臨海是否有關?
先來看看此資料中臨海與內陸城市的數量:
內陸城市數量遠大於臨海城市,這沒什麼懸念,我們再來看下散點分佈情況:
從圖中可以大概看出臨海城市空氣質量由於內陸。但是我們還是要靠資料說話,分組計算空氣質量的均值:
要用到groupby()分組函式
臨海79,內陸64。但是資訊太少,我們再畫個箱線圖和小提琴圖,來了解更多資訊。
從箱線圖可看出,臨海城市的AQI的四分位值,最大值都比內陸城市低,所以臨海城市空氣質量相對於內陸城市要好。但是箱線圖對於資料分佈密度不明顯。
所以,繪製小提琴圖,既能展示箱線圖資訊,又能呈現分佈的密度。
我們還可以將小提琴圖和分簇散點圖結合在一起看:
inner=None表示把“琴絃”去除。
到這裡我們能得出臨海城市空氣質量普遍好於內陸嗎?
顯然是不能的,我們的資料只有幾百條,只是一個樣本,並不能代表總體,這是樣本與總體的差異性。
那怎麼得到一個可靠的結論呢? 我們需要對樣本做差異檢驗:
對兩樣本做 t 檢驗,來檢視臨海城市與內陸城市的均值差異是否顯著。在進行兩樣本檢驗時,我們需要知道兩樣本的方差是否一致才能進行後面的 t 檢驗
先匯入相關庫,定義變數,stats.levene()方差齊性檢驗。返回兩個值:第一個是統計量不要看,,看第二個p值為0.77,說明接受原假設,方差是齊性的(原假設:兩樣本方差相等,備擇假設:方差不等),可以進行下一步了。
進行t檢驗時,兩樣本的方差是否相等,對結果有影響!ttest_ind():兩獨立樣本t檢驗,返回結果的p值只有0.007,很小,拒絕原假設(兩樣本不相等)。
從統計量為負數可以看出,inland是大於coastal的。怎麼算呢?在stats中提供的兩獨立樣本t檢驗是雙邊檢驗(=或≠),而現在我們要的是大於小於的關係(單邊檢驗),所以需要計算p值:stats.t.sf(),sf=1-cdf,cdf為累計分佈函式,sf為殘存函式,自由度df。p值0.99666,說明coastal越小。
到此為止,我們有超過99%的機率可以認為空氣質量臨海城市普遍優於內陸。
5.4 空氣質量主要受哪些因素影響?
- 人口密度大是否對導致空氣質量低呢?
- 綠化率高是否能提高空氣質量呢?
先用pairplot()畫一個散點圖矩陣,取3列資料
對於不同變數的繪製散點圖,同變數的繪製直方圖,只表示數量。從上圖並不能明顯地看出變數之間的相關性, 我們需要通過計算相關係數來了解。
DataFrame物件提供了計算相關係數的方法,直接data.corr()即可
再將資料視覺化,更清晰的呈現資料:
結果統計
從結果中可知,空氣質量指數主要受降雨量(-0.40) 與緯度(0.55) 影響。
- 降雨量越多,空氣質量越好。
- 緯度越低,空氣質量越好。
此外,我們還能夠發現其他一些明顯的細節:
- GDP (城市生產總值)與Incineration (焚燒量)正相關(0.90) 。
- Temperature (溫度)與Precipitation (降雨量) 正相關(0.69) 。
- Temperature (溫度)與Latitude (緯度)負相關(-0.81)。
- Longitude (經度) 與Altitude (海拔) 負相關(-0.74) 。
- Latitude (緯度)與Precipitation (降雨量)負相關(-0.66) 。
- Temperature (溫度)與Altitude (海拔)負相關(-0.46) 。
- Altitude (海拔)與Precipitation (降雨量)負相關(-0.32) 。
5.5全國城市空氣質量普遍處於何種水平?
據說2015年全國所有城市的空氣質量指數均值在71左右,真的假的?
為了驗證這是否正確,我們先來看看均值:
75?大於71了,說明訊息是假的?
當然還不能這麼說,因為,它倆不對等,一個是總體均值,一個是樣本均值,所以需要驗證一下它們是否相等。我們可以用單樣本t經驗(ttest_lsamp),置信度為95%。
p值大於0.05,所以無法拒絕原假設,維持原假設,即維持2015年全國所有城市的空氣質量指數均值在71左右。
呼叫函式stats.t.interval()得出置信區間。
這樣我們就計算出2015年全國所有城市平均空氣質量指數95%的可能在70.63~80.04之間。
6 總結
1.空氣質量總體分佈上來說,南方城市優於北方城市,西部城市優於東部城市。
2.臨海城市的空質量整體上好於內陸城市。
3.是否臨海,降雨量與緯度對空氣質量指數的影響較大。
4.我國城市平均空氣質量指數有95%的可能性在(70.63 - 80.04)這個區間內。
7 PPT展示