Python視覺化(1):折線圖

第2大腦發表於2018-12-03

摘要: 利用matplotlib繪製橫軸為日期格式的折線圖時,存在不少技巧。本文藉助Tushare包返回的股票資料,介紹日期型折線圖繪製的方法。

上一篇文章的最後講到了折線圖的繪製,本文接著進行詳細介紹其繪製方法,回顧:

Python資料處理分析(1):日期型資料處理

折線圖繪製的資料來源,採用Tushare包獲取上市公司基本資料表,格式如下:

1import pandas as pd
2data = pd.read('get_stock_basics.csv',encoding = 'utf8')
3print(data.head())
4
5ts_code    symbol  name    list_status list_date   is_hs
6000001.SZ    1   平安銀行    L   19910403    S
7000002.SZ    2   萬科A L   19910129    S
8000004.SZ    4   國農科技    L   19910114    N
9000005.SZ    5   世紀星源    L   19901210    N

然後利用resampleto.period方法彙總各年度的上市公司數量資料,格式為Pandas.Series陣列。

 1# 彙總各年上市公司數量
2data = data.set_index(['list_date'])
3data = data.resample('AS').count()['ts_code']
4data = data.to_period('A')
5print(data.head())
6print(data.tail())
7# 結果如下:
8list_date
91990      7
101991      4
111992     37
121993    106
131994     99
14...
15list_date
162014    124
172015    223
182016    227
192017    438
202018     78

1. Series直接繪製折線圖

首先,我們可以直接利用pandas的陣列Series繪製折線圖:

 1import matplotlib.pyplot as plt
2plt.style.use('ggplot')  # 設定繪圖風格
3fig = plt.figure(figsize = (10,6))  # 設定圖框的大小
4ax1 = fig.add_subplot(1,1,1)
5data.plot() # 繪製折線圖
6
7# 設定標題及橫縱座標軸標題
8colors1 = '#6D6D6D'  #設定標題顏色為灰色
9plt.title('歷年中國內地上市公司數量變化',color = colors1,fontsize = 18)
10plt.xlabel('年份')
11plt.ylabel('數量(家)')
12plt.show()
Python視覺化(1):折線圖

可以發現,圖中存在兩個問題:一是缺少數值標籤,二是橫座標年份被自動分割了。我們希望能夠新增上數值標籤,然後座標軸顯示每一年的年份值。接下來,需要採用新的方法重新繪製折線圖。

2. 折線圖完善

 1# 建立x,y軸標籤
2x = np.arange(0,len(data),1)
3    ax1.plot(x,data.values, #x、y座標
4    color = '#C42022'#折線圖顏色為紅色
5    marker = 'o',markersize = 4 #標記形狀、大小設定
6    )
7ax1.set_xticks(x) # 設定x軸標籤為自然數序列
8ax1.set_xticklabels(data.index) # 更改x軸標籤值為年份
9plt.xticks(rotation=90# 旋轉90度,不至太擁擠
10
11for x,y in zip(x,data.values):
12    plt.text(x,y + 10,'%.0f' %y,ha = 'center',color = colors1,fontsize = 10 )
13    # '%.0f' %y 設定標籤格式不帶小數
14# 設定標題及橫縱座標軸標題
15plt.title('歷年中國內地上市公司數量變化',color = colors1,fontsize = 18)
16plt.xlabel('年份')
17plt.ylabel('數量(家)')
18# plt.savefig('stock.png',bbox_inches = 'tight',dpi = 300)
19plt.show()

完善後的折線圖如下:

Python視覺化(1):折線圖

可以看到,x軸逐年的資料都顯示並且數值標籤也新增上了。

3. 多元折線圖

上面介紹了一元折線圖的繪製,當需要繪製多元折線圖時,方法也很簡單,只要重複繪圖函式即可。這裡我們以二元折線圖為例,繪製國內兩家知名地產公司萬科和保利地產2017年的市值變化對比折線圖。

3.1. 資料來源

資料來源仍然採用tushare包的pro.daily_basic()介面,該介面能夠返回股票的每日股市資料,其中包括每日市值total_mv。我們需獲得的兩隻股票分別是萬科地產(000002.SZ)和保利地產(600048.SH),下面就來獲取兩隻股票2017年的市值資料。

 1import tushare as ts
2ts.set_token('你的token')  # 官網註冊後可以獲得
3pro = ts.pro_api()
4def get_stock():
5    lst = []
6    ts_codes = ['000002.SZ''600048.SH']
7    for ts_code in ts_codes:
8        data = pro.daily_basic(
9            ts_code=ts_code, start_date='20170101', end_date='20180101')
10    print(lst)
11    reutrn lst
12    # 結果如下,total_mv為當日市值(萬元):
13    #萬科地產資料
14        ts_code trade_date  close   …   total_mv    circ_mv
150    000002.SZ   20171229    31.06   …   3.43E+07    3.02E+07
161    000002.SZ   20171228    30.7    …   3.39E+07    2.98E+07
172    000002.SZ   20171227    30.79   …   3.40E+07    2.99E+07
183    000002.SZ   20171226    30.5    …   3.37E+07    2.96E+07
194    000002.SZ   20171225    30.37   …   3.35E+07    2.95E+07
20
21    #保利地產資料
22        ts_code trade_date  close   …   total_mv    circ_mv
230    600048.SH   20171229    14.15   …   1.68E+07    1.66E+07
241    600048.SH   20171228    13.71   …   1.63E+07    1.61E+07
252    600048.SH   20171227    13.65   …   1.62E+07    1.60E+07
263    600048.SH   20171226    13.85   …   1.64E+07    1.63E+07
274    600048.SH   20171225    13.55   …   1.61E+07    1.59E+07

下面對資料作進一步修改,從DataFrame中提取total_mv列,index設定為日期,再利用resample和pd.to_period方法按月彙總市值資料。

 1data['trade_date'] = pd.to_datetime(data['trade_date'])
2# 設定index為日期
3data = data.set_index(data['trade_date']).sort_index(ascending=True)
4# 按月彙總和顯示
5data = data.resample('m')
6data = data.to_period()
7# 市值改為億元
8market_value = data['total_mv']/10000
9
10# 二者結果分別如下,萬科地產:
112017-01    2291.973270
122017-02    2286.331037
132017-03    2306.894790
142017-04    2266.337906
152017-05    2131.053098
162017-06    2457.716659
172017-07    2686.982164
182017-08    2524.462077
192017-09    2904.085487
202017-10    2976.999550
212017-11    3263.374043
222017-12    3317.107474
23# 保利地產:
242017-01    1089.008286
252017-02    1120.023350
262017-03    1145.731640
272017-04    1153.760435
282017-05    1108.230609
292017-06    1157.276044
302017-07    1244.966905
312017-08    1203.580209
322017-09    1290.706606
332017-10    1244.438756
342017-11    1336.661916
352017-12    1531.150616

3.2. 繪製二元折線圖

利用上面的Series資料就可以作圖了。

 1# 設定繪圖風格
2plt.style.use('ggplot')
3fig = plt.figure(figsize = (10,6))
4colors1 = '#6D6D6D'  #標題顏色
5
6# data1萬科,data2保利
7data1 = lst[0]
8data2 = lst[1]
9# 繪製第一條折線圖
10data1.plot(
11color = '#C42022'#折線圖顏色
12marker = 'o',markersize = 4#標記形狀、大小設定
13label = '萬科'
14)
15# 繪製第二條折線圖
16data2.plot(
17color = '#4191C0'#折線圖顏色
18marker = 'o',markersize = 4#標記形狀、大小設定
19label = '保利'
20)
21# 還可以繪製更多條
22# 設定標題及橫縱座標軸標題
23plt.title('2017年萬科與保利地產市值對比',color = colors1,fontsize = 18)
24plt.xlabel('月份')
25plt.ylabel('市值(億元)')
26plt.savefig('stock1.png',bbox_inches = 'tight',dpi = 300)
27plt.legend() # 顯示圖例
28plt.show()

繪圖結果如下:

Python視覺化(1):折線圖

如果想新增數值標籤,則可以使用下面的程式碼:

 1# 繪製第一條折線圖
2# 建立x,y軸標籤
3x = np.arange(0,len(data1),1)
4ax1.plot(x,data1.values, #x、y座標
5color = '#C42022'#折線圖顏色紅色
6marker = 'o',markersize = 4#標記形狀、大小設定
7label = '萬科'
8)
9ax1.set_xticks(x) # 設定x軸標籤
10ax1.set_xticklabels(data1.index) # 設定x軸標籤值
11# plt.xticks(rotation=90)
12for x,y in zip(x,data1.values):
13    plt.text(x,y + 10,'%.0f' %y,ha = 'center',color = colors1,fontsize = 10 )
14    # '%.0f' %y 設定標籤格式不帶小數
15
16# 繪製第二條折線圖
17x = np.arange(0,len(data2),1)
18
19ax1.plot(x,data2.values, #x、y座標
20color = '#4191C0'#折線圖顏色藍色
21marker = 'o',markersize = 4#標記形狀、大小設定
22label = '保利'
23)
24ax1.set_xticks(x) # 設定x軸標籤
25ax1.set_xticklabels(data2.index) # 設定x軸標籤值
26# plt.xticks(rotation=90)
27for x,y in zip(x,data2.values):
28    plt.text(x,y + 10,'%.0f' %y,ha = 'center',color = colors1,fontsize = 10 )
29    # '%.0f' %y 設定標籤格式不帶小數
30
31# 設定標題及橫縱座標軸標題
32plt.title('2017年萬科與保利地產市值對比',color = colors1,fontsize = 18)
33plt.xlabel('月份')
34plt.ylabel('市值(億元)')
35
36plt.savefig('stock1.png',bbox_inches = 'tight',dpi = 300)
37plt.legend() # 顯示圖例
38plt.show()

結果如下圖所示:

Python視覺化(1):折線圖

可以看到,兩隻股票市值從2017年初開始一直在上漲,萬科的市值是保利的2倍左右。
本文僅簡單提取了兩隻股票的市值資料,只要你願意,3000多隻股票的資料都可以拿來繪圖。

文章程式碼及素材可在下面連結中獲得:

另外,後期可能會在我的部落格中不斷更新、補充本文的內容。如想獲得更多該方面的知識,可點選閱讀原文,或者瀏覽器開啟我的部落格連結。

本文完。

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69900353/viewspace-2222530/,如需轉載,請註明出處,否則將追究法律責任。

相關文章