MySQL常見6個考題在實際工作中的運用

程式設計一生發表於2020-05-26

題目一

MyISAM和InnoDB的區別,什麼時候選擇MyISAM

參考回答

InnoDB是目前MySQL主流版本(5.6、5.7、8.0)預設的儲存引擎,支援事務、外來鍵、行級鎖,對於併發條件下要求資料的一致性,適用於對資料準確性要求高的場景。

MyISAM只支援表級鎖、資料排列是按照插入順序,沒有做規則排序。適合應用以查詢和插入為主,只有很少量的更新和刪除操作,對事務的完整性和併發性要求不是很高的場景。

實際運用

看到很多人在選擇儲存引擎的時候會無腦的選擇InnoDB,這個選擇合理的一點是如果對資料準確性要求沒有那麼高,直接用NoSQL就好了。用MySQL就是為了可靠啊。

但是實際工作中,我設計的資料庫中通常都會有幾張MyISAM的資料表,通常用來儲存歷史記錄,與使用InnoDB儲存實時記錄資訊的配合使用。

舉個例子:比如一條物流資訊,在實時的表裡存著目前物流的狀態:比如配送中。這條物流在歷史上經過了:正在通知快遞公司取件、XXX已收攬等,這張記錄表基本只有插入和查詢,並且丟失一箇中間狀態不影響當前結果,這就很合適用MyISAM。

 

題目二

簡述MySQL的MVCC多版本併發控制

參考回答

MVCC是對於事務隔離級別的讀已提交RC和可重複讀RR,基於樂觀鎖的實現。在LBCC(基於鎖的併發控制)RC、RR和序列化分別是通過加行鎖、間隙鎖和表鎖來基於悲觀鎖實現。而樂觀鎖的原理就是在特定的時間點(RC是每次讀時,RR是事務開始時)生成一個當前快照,讀資料讀取快照,只在提交時判斷是否有衝突,類似於git的branch和commit。

MVCC會在新開啟一個事務時,給事務裡包含的每行記錄新增一個當前事務ID和回滾指標。幷包含一個Read View,Read View裡儲存了當前活躍的事務列表,小於這些列表的最近的事務ID才是可見的。這樣保證了讀到的都是已提交的事務。

實際運用

MVCC不僅可以用於資料庫,也是很常見的一種併發控制手段。比如使用有限狀態自動機來控制的訂單狀態,在更新訂單狀態的時候先查詢當前狀態,比如當前狀態是訂單未提交,則更新時update XXX set status='訂單已提交' where status='訂單未提交',如果執行這條語句時,status已經發生了改變,這條語句就執行失敗了。這樣不通過資料庫自身事務的MVCC,在業務邏輯裡也實現了MVCC思想的樂觀鎖設計。

 

題目三

分散式鎖的實現方式

參考回答

主流有三種

1>基於資料庫

1.1>基於資料庫主鍵:插入一條資料,指定主鍵。如果有兩條插入會主鍵衝突,併發執行失敗

1.2>基於資料庫排他鎖:提交一個update事務,如果這個事務不提交,其他也對鎖定範圍內執行update就會阻塞,解決併發問題

2>基於快取比如redis的setNX

3>基於zookeeper

實際運用

相信很多人選擇分散式鎖都是選擇第二種,第三種雖然併發性差一下,如果本來就引入了zk,而沒有快取,而分散式鎖應用量又不那麼大,為了減少引入新元件帶來的風險和維護成本,也有可能選擇zk。很多人大概認為自己沒有用過基於資料庫的分散式鎖,實際上在不使用MVCC的時代並不是這樣。

在使用spring進行業務開發的時候,常見的一種場景就是使用spring配置事務。預設級別是Repeatable Read可重複讀。在這裡面如果使用的是LBCC,一進入事務就加入一個排他鎖,比如insert、update、delete或者select XXX for update。然後做其他的,比如進行一個RPC呼叫。這時候一旦出現併發,只有一個能順利執行,其他都會被阻塞。實際上就相當於使用了分散式鎖。

 

題目四

為什麼採用B+樹作為索引結構?

參考回答

如果採用Hash表,範圍查詢需要全表掃描;如果採用二叉查詢樹,由於無法保證平衡,可能退化為連結串列;如果採用平衡二叉樹,通過旋轉解決了平衡的問題,但是旋轉操作效率太低;如果採用紅黑樹,樹太高,IO次數多;如果採用普通B樹,節點要存數索引和資料,一個記憶體頁可儲存的資料還是少,另外範圍查詢也需要多次IO;

而B+Tree有三個特性:

1>非葉子節點不儲存data,只儲存索引(冗餘),可以放更多的索引

2>葉子節點包含所有索引欄位

3>葉子節點用指標連結,提高範圍查詢的效能

實際運用

在分散式場景下,我們的業務ID都是全域性唯一的字串。如果單純從業務上來考慮,用業務ID作為資料庫的主鍵就足夠了。可以DBA往往要求使用整型的自增主鍵作為資料庫主鍵,而這個主鍵對業務來說就是個浪費,沒有任何業務含義。

如果瞭解了索引的底層結構就不難理解

1>整型比字串佔用更少的空間

2>同時大小比較也很快

3>之所以要自增是每次插入新的記錄,對於葉子節點來說:記錄會順序的新增到當前索引節點的後續位置,當一頁寫滿,會自動開闢一個新的頁。而如果使用非自增主鍵,就需要插入的時候移動資料,甚至目標頁面可能已經被回寫到磁碟上而從快取中清掉,此時又要讀回來。分頁操作造成大量的碎片,必須通過優化操作重建表並優化填充頁面。

 

題目五

什麼叫做覆蓋索引?

參考回答

只需要在一棵輔助索引樹上就可以獲取SQL所需要的所有列資料,不需要回表。

實際運用

一些持久層框架比如mybatis的generator外掛可以自動生成sql配置檔案,這些配置檔案往往效率很低。但是剛畢業的同學很多都不會去改這個檔案,比如只需要個別列的時候會用java的lambda表示式等方式從邏輯上做處理。結果造成一些效能的問題。

我在根據一些條件進行範圍查詢的時候,如果只需要返回ID或者個別列,會自己去改mybatis的generator自動生成的檔案,原因是儘量使用覆蓋索引,較回錶速度快。

想驗證是否使用了覆蓋索引,可以用explain執行計劃,檢視extra欄位,如果只顯示Using index說明正確使用了覆蓋索引。如果extra為空或者除了using index還有filesort說明觸發了回表。

 

題目六

查詢在什麼時候不走索引

參考回答

主要三種情況

1>不滿足走索引的條件,常見的情況有

1.1>不滿足最左匹配原則

1.2>查詢條件使用了函式

1.3>or操作有一個欄位沒有索引

1.4>使用like條件以%開頭

2>走索引效率低於全表掃描,常見的情況有

2.1>查詢條件對null做判斷,而null的值很多

2.2>一個欄位區分度很小,比如性別、狀態

3>需要回表的查詢結果集過大,超過了配置的範圍

實際運用

使用索引是為了對查詢做優化,要衡量優化效果需要資料說話。所以需要一些工具來衡量,常用的有:

1>慢查詢日誌

開啟慢查詢日誌,可以針對慢SQL進行分析看看哪些可以用索引進行優化

2>show processlist

show processlist 語句可以檢視當前正在執行的SQL,如果一些SQL執行慢,block了其他的SQL,這是個很好的工具

3>show profile分析SQL

使用這個工具可以分析出時間究竟耗費在哪個階段。先查詢是否支援

支援的話,可以用select @@profiling 檢視是否開啟,如果結果為0說明未開啟。需要先set @@profiling=1;

這時候就可以用show profiles檢視每一條SQL語句耗費的時間

 

 

show profile for query XXID 可以檢視具體耗費在哪個階段

4>Trace分析優化器的執行計劃

使用set optimizer_trace='enabled=on',end_markers_in_json=on;可以開啟trace分析,想檢視具體的優化器執行計劃,只要執行

select * from `information_schema`.optimizer_trace即可

 

 

點選開每一步都有很詳細的分析

 

總結

知識只要學透了都可以靈活運用。在運用的時候要注意衡量效果。一個常見的誤區是開發人員無腦的在MySQL上層加快取,用來提高效率。但是快取只適用於讀多寫少的情況,比如在金融交易系統,資料讀寫比例1:1。資料總是查詢出來下一刻就被更新了,這時候用快取反而加重系統的負擔和複雜性。

這時候,我們可以先利用工具查詢資料庫的讀寫比例。比如show global status like 'Com_______' 這個SQL可以檢視select、update、insert、delete都被執行了多少次。

或者show global status like 'Innodb_row_%' 除了檢視Innodb的讀寫情況,還可以檢視鎖的情況。

 

思考

請網上搜尋一下「58Mysql軍規」然後思考每條軍規背後的理論支撐。

相關文章