邊緣計算技術國內外發展現狀與發展對策
本報告為科技部科技創新戰略研究專項專案“高新技術領域年度重點創新進展報告”(編號:ZLY201633)研究成果之一。作者是科學技術部高技術研究發展中心的傅耀威老師和西北大學的孟憲佳老師。本文特約編輯:姜念雲,本文首發於《科技中國》,邊緣計算社群整理。全文 4565 字,淺顯易懂,預計閱讀 15 分鐘。 |
邊緣計算是透過把計算、儲存、頻寬、應用等資源放在網路的邊緣側,減小傳輸延遲和頻寬限制的新興技術。這項技術為物聯網、雲端計算等技術提供了前所未有的連線性、集中化以及智慧化,滿足了敏捷連線、實時業務、資料最佳化、應用智慧、安全與隱私保護等方面的需求,將是實現分散式自治、工業控制自動化的重要支撐。本文對邊緣計算技術、標準、產業和應用國內外發展現狀與趨勢進行了梳理分析,提出了我國的進一步發展對策。
近年來,“物聯網”“雲端計算”等技術得到廣泛應用,但是隨著萬物互聯以及 5G 高頻寬、低時延時代的到來,各類業務如車聯網、工業控制、4K/8K、虛擬現實 / 擴增實境(VR/AR)等所產生的資料量爆炸式增長,對計算設施帶來了實時性、網路依賴性和安全性等方面的要求,為了解決這些問題,國內外學者們提出了邊緣計算的概念。
邊緣計算的“邊緣”指的是在資料來源與雲端資料中心之間的任何計算及網路資源。例如,智慧手機就是個人與雲端的“邊緣”,智慧家居中的閘道器就是家庭裝置與雲端的“邊緣”。邊緣計算的基本原理就是在靠近資料來源的地方進行計算,是在靠近物或資料來源頭的網路邊緣側,融合網路、計算、儲存、應用核心能力,就近提供邊緣智慧服務的開放平臺。與雲端計算相比較,邊緣計算就近佈置,因而可以理解為雲端計算的下沉。
邊緣計算實現了物聯網技術前所未有的連線性、集中化和智慧化,由此可以滿足敏捷連線、實時業務、資料最佳化、應用智慧、安全與隱私保護等方面的需求,是實現分散式自治、工業控制自動化的重要支撐。
邊緣計算是計算系統從扁平到邊緣,以及面向 5G 網路架構演進的必然技術,同時也提供了一種新的生態系統和價值鏈。第三方資料分析機構 IDC 預測,到 2020 年,全球將有約 500 億的智慧裝置接入網際網路,其中主要涉及智慧手機、可穿戴裝置、個人交通工具等,其中 40% 的資料需要邊緣計算服務。邊緣計算有著強大市場潛力,也引起了各研究機構、標準組織、服務提供商和產業界極大的關注。
目前,邊緣計算技術與應用仍處於發展初期階段,亞馬遜、谷歌和微軟等雲端計算巨頭是該領域的領跑者。
2017 年,亞馬遜攜 AWS Greengrass 進軍邊緣計算領域,走在了行業的前面。該服務將 AWS 擴充套件到裝置上,這樣就可以“在本地處理它們所生成的資料,同時仍然可以使用雲來進行管理、分析資料和持久的儲存”。
微軟公司計劃未來 4 年在物聯網領域投入 50 億美元,其中包括邊緣計算專案。2017 微軟釋出了 Azure IoT Edge 解決方案,該方案“將雲分析擴充套件到邊緣裝置”,支援離線使用。該公司還希望聚焦於人工智慧應用。
谷歌 2017 年以來已宣佈了兩款相關的新產品,即硬體晶片 Edge TPU 和軟體堆疊 Cloud IoT Edge,意在幫助改善邊緣聯網裝置的開發。谷歌表示,“Cloud IoT Edge 將谷歌雲強大的資料處理和機器學習功能擴充套件到數十億臺邊緣裝置,比如機器人手臂、風力渦輪機和石油鑽塔,這樣它們就能夠對來自其感測器的資料進行實時操作,並在本地進行結果預測。”
國際上許多公司也在開發軟體和技術幫助邊緣計算實現騰飛。惠普公司計劃在未來 4 年內向邊緣計算領域投資 40 億美元。該公司的 Edgeline Converged Edge Systems 系統的目標客戶是那些希望獲得資料中心級計算能力,且通常在邊遠地區運營的工業合作伙伴。其系統承諾在不依賴於將資料傳送到雲或資料中心的情況下,為工業運營(比如石油鑽井平臺、工廠或銅礦)提供來自聯網裝置的洞見。
人工智慧晶片製造商英偉達於 2017 年推出了 Jetson TX2,這是一個面向邊緣裝置的人工智慧計算平臺。它的前身是 Jetson TX1,它號稱要“重新定義將高階 AI 從雲端擴充套件到邊緣的可能性”。
有關邊緣計算的標準化工作也逐漸受到各大標準化組織的關注,主要國際標準化組織紛紛成立相關工作組,開展邊緣計算標準化工作。2014 年,歐洲電信標準化協會(ETSI)成立移動邊緣計算標準化工作組;2015 年,思科、ARM、戴爾、英特爾、微軟、普林斯頓大學等機構聯合發起成立開放霧計算聯盟;2017 年 ISO/IECJTC1SC41 成立了邊緣計算研究小組,以推動邊緣計算標準化工作。2017 年 IEC 釋出了 VEI(Vertical Edge Intelli-gence)白皮書,介紹了邊緣計算對於製造業等垂直行業的重要價值。2018 年初,ITU-TSG20(國際電信聯盟物聯網和智慧城市研究組)成功立項首個物聯網領域邊緣計算專案“用於邊緣計算的 IOT 需求”。
2016 年 11 月 30 日,我國邊緣計算產業聯盟(ECC,Edge Computing Consortium)在北京成立。該聯盟由華為技術有限公司、中國科學院瀋陽自動化研究所、中國資訊通訊研究院、英特爾公司、ARM 和軟通動力資訊科技有限公司創始成立,首批成員單位共 62 家,涵蓋科研院校、工業製造、能源電力等不同領域。2016 年和 2017 年分別出版了國內的《邊緣計算參考架構》1.0 和 2.0 版本,梳理了邊緣計算的測試床,提出了邊緣計算在工業製造、電力能源、智慧城市、交通等行業應用的解決方案。
邊緣計算是 5G 的核心能力之一,是實現 5G 效能提升的關鍵。2017 年,中國通訊標準化協會(CCSA)發起了邊緣計算研究專案。CCSA 無線通訊技術委員會(TC5)和工業網際網路特設任務組(ST8)都分別立項了有關邊緣計算的專案。在 CCSA ST8 中,重點討論面向工業網際網路的邊緣計算和邊緣雲標準化內容。目前,ST8 任務組已經立項標準包括:《工業網際網路邊緣計算總體架構與要求》,《工業網際網路邊緣計算技術研究》《工業網際網路邊緣計算邊緣節點模型與要求》,《工業網際網路邊緣計算需求》。
在 CCSA TC5 中,三大運營商分別在邊緣計算領域立項,涉及邊緣計算平臺架構、場景需求、關鍵技術研究和總體技術要求。中國聯通發起並主導的“5G 邊緣計算平臺能力開放技術研究”專案,將結合邊緣計算平臺架構以及行動網路能力,進行 5G 邊緣計算能力開放的場景分析和方案研究,進一步標準化網路資訊開放框架與內容。中國移動和中國電信也分別牽頭立項《邊緣計算總體技術要求》和《邊緣計算關鍵技術研究》,內容涵蓋了 5G MEC 的關鍵技術,包括:本地分流、業務快取和加速、本地內容計費、智慧化感知與分析、網路能力開放、移動性管理和業務連續性保障。
三大運營商在邊緣計算方面已經展開廣泛探索。其中,中國聯通 2018 年 2 月宣佈正式啟動全國範圍內 15 個省市的 Edge-Cloud 規模試點和數千個邊緣資料中心的規劃建設工作;中國移動在江蘇、浙江等地透過核心網下沉閘道器分流至 CDN 邊緣節點,並探索了一些商用場景;中國電信在 2018 年搭建了基於邊緣計算的 vCDN 概念驗證解決方案環境,測試結果理想。
目前,運營商的邊緣計算主要處於技術研究、實驗室測試,以及相對簡單場景的預商用階段。英特爾和阿里雲聯合在重慶瑞方渝美壓鑄有限公司打造的工業邊緣計算平臺,採用了英特爾開發的深度學習演算法和資料採集到協議轉換的軟體,以及阿里雲開發的基於 Yocto 的作業系統(AliOS Things)、資料接入雲端 Link Edge。該平臺可以執行在工業邊緣計算節點本地,並將結果聚合並儲存在邊緣伺服器上,再透過阿里雲的 LinkEdge 實現資料上雲。該平臺採用的機器視覺解決方案在 0.695 秒的時間內,幾乎可以實時地識別製造缺陷,檢測精度約為 100%。
總體來說,我國的邊緣計算研究還處於起步階段。
目前,關於邊緣計算的研究才剛剛起步,雖然已經取得了一定成果,但從實際應用來說,還存在很多問題需要研究,下面對其中的幾個主要問題進行分析。
第一,多主體的資源管理。邊緣計算資源分散在資料的傳輸路徑上,被不同的主體所管理和控制,比如使用者控制終端裝置、網路運營商控制通訊基站、網路基礎設施提供商控制路由器、應用服務供應商控制邊緣伺服器與內容傳輸網路。而云計算中的資源都是集中式的管理,因此雲端計算的資源管理方式並不適用管理邊緣計算分散的資源。而目前關於邊緣計算的研究也主要集中在對單一主體資源的管理和控制,還未涉及多主體資源的管理,實現靈活的多主體資源管理是一個十分富有挑戰性的問題。
第二,應用的移動管理。邊緣計算依靠資源在地理上廣泛分佈的特點來支援應用的移動性,一個邊緣計算節點只服務周圍的使用者,應用的移動就會造成服務節點的切換,而云計算對應用移動性的支援則是“伺服器位置固定,資料透過網路傳輸到伺服器”。所以,在邊緣計算中應用的移動管理也是一種新模式,涉及到資源發現和資源切換等問題。
第三,虛擬化技術。為了方便資源的有效管理,邊緣計算需要虛擬化技術的支援,為系統選擇合適的虛擬化技術是邊緣計算的一個研究熱點。目前,新型的虛擬化技術層出不窮,如何打破虛擬機器和容器的規則與界線,將兩者充分融合,同時具備兩者的優勢,設計適應邊緣計算特點的虛擬化技術,也是一大挑戰。
第四,資料分析。資料分析的資料量越大,往往提取出的價值資訊就越多。但是收集資料需要時間,價值資訊往往也具有時效性。邊緣計算使資料可以在彙集的過程中被處理與分析,很多資料如果被過早地分析,可能會丟失很多有價值的資訊,所以如何權衡提取資訊的價值量與時效性是一個關鍵性問題。
第五,程式設計模型。邊緣計算資源動態、異構與分散的特性使應用程式的開發十分困難。為減少應用的開發難度,需要可以適應邊緣計算資源的程式設計模型。
據估算,2017-2026 年美國在邊緣計算方面的支出將達到 870 億美元,歐洲則為 1850 億美元。因此,為應對新的發展機遇,對我國發展邊緣計算技術,建議採取以下對策。
第一,加強邊緣計算的技術標準和規範建設。邊緣計算涉及到海量的終端裝置、邊緣節點,是資料採集、資料匯聚、資料整合、資料處理的前端,而這些裝置往往存在異構性,來自於不同的生產廠商、不同的資料介面、不同的資料結構、不同的傳輸協議、不同的底層平臺等。為此,統一的技術規範和標準亟待達成一致。這些標準和規範的制定,也將大大節約邊緣雲等的建設成本。
第二,注重將邊緣計算技術發展與新一代資訊科技結合。應將邊緣計算技術的研發和應用與“網際網路 +”、雲端計算、大資料和新一代通訊技術等研發計劃發展協同起來。邊緣計算是與雲端計算相生相伴的一種技術,並且與大資料、5G 通訊和智慧資訊處理技術等高度聯接。因此,我國在制定相關研發計劃的時候,要將對邊緣計算技術和應用的發展納入進去,加快相關核心技術的研發,促進邊緣計算技術成熟度的提升。
第三,加強邊緣計算的開源生態建設。邊緣計算本身由海量的終端裝置構成,而眾多智慧終端如採用統一的開源作業系統,便可形成邊緣計算的開源生態環境。利用開源生態來維持核心程式碼,形成業界認可的技術介面、關鍵功能、發展路徑等,將會給各廠商提供均等的發展機會。
原文地址: https://www.linuxprobe.com/development-status-and.html
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/31559985/viewspace-2664485/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 邊緣計算的發展歷程
- 雲端計算時代邊緣計算正蓬勃發展
- 邊緣計算與資料中心的發展趨勢
- 阿里雲李克:邊緣雲技術發展與實踐阿里
- 網路空間測繪國內外發展及現狀
- 國內CMS技術發展的外在表現形式
- 邊緣計算平臺如何助力物聯網發展
- 5G時代的邊緣計算:中國的技術和市場發展(80頁)
- ERP技術的發展現狀與展望(轉)
- 國外低軌衛星通訊系統發展現狀
- 2021年,邊緣技術將推動商業發展
- Forrester:AI和5G驅動邊緣計算的發展RESTAI
- 無線感測網路國內外研究發展狀況
- IoT 邊緣計算框架的新進展框架
- 計算時代的計算機技術發展趨勢計算機
- 地平線黃暢演講:邊緣 AI 計算發展趨勢AI
- 國內MLCC產業現狀及未來發展趨勢產業
- 國外數字孿生衛星技術發展概述
- 邊緣計算系列科普(五)邊緣計算中的關鍵技術
- 全球隱私計算技術發展概覽
- 現代 CPU 技術發展
- IT技術發展
- 【邊緣計算】劉陽:邊緣計算髮展中的若干熱點問題及思考
- 美顏sdk人臉配準技術發展現狀
- 國內外大模型生態發展報告!大模型
- 30張PPT分享國內外“二手車電商”的發展現狀及趨勢
- CDN技術發展
- 淘寶技術發展
- 切片技術發展
- 邊緣計算與智慧製造發展勢頭旺盛,會是製造業的未來嗎
- 自動駕駛汽車技術發展現狀,未來已來自動駕駛
- 防火牆產品的技術現狀及發展趨勢防火牆
- 邊緣計算與雲端計算
- 雲端計算技術發展的六大趨勢
- 掃地機器人產業發展現狀及市場發展前景機器人產業
- 計算機視覺發展瓶頸顯現 國內企業如何破局?計算機視覺
- 國內網際網路停車發展的真實現狀分析內網
- 2021車牌識別相機技術發展現狀