雲端計算時代邊緣計算正蓬勃發展
今天的邊緣技術不僅能使利潤提升,還能有助於降低風險,改善產品、服務和客戶體驗。
最近,人們對邊緣計算報以越來越大的厚望。在這一行業中,不乏有一些大膽的想法,如“邊緣將吞噬雲端計算”,或是,將實時自動化擴充套件到醫療保健、零售和製造業。
專家們一致認為,邊緣計算將在幾乎所有企業的數字化轉型中發揮關鍵作用,但實際上,其進展一直很緩慢。傳統的觀念阻礙了公司無法充分利用實時決策和資源分配的優勢。為了理解這種情況是如何以及為什麼會發生的,讓我們回顧一下邊緣計算的第一波浪潮,以及從那之後發生了什麼。
邊緣計算的第一波浪潮:物聯網(IoT)
對大多數行業來說,邊緣計算的概念與第一波浪潮物聯網潮緊密相關。當時,人們的焦點集中在從可以附著在任何物品上的小型感測器上收集資料,然後將資料傳輸到一箇中心位置——比如雲或主資料中心。
這些資料流必須由通常稱為“感測器融合”的技術關聯到一起。當時,感測器的經濟狀況、電池壽命和廣泛性往往導致資料流過於有限,保真度較低。此外,用感測器改裝現有的裝置往往成本過高。雖然感測器本身很便宜,但安裝過程很耗時,而且需要訓練有素的專業人員來執行。最後,使用感測器融合分析資料所需的專業知識被嵌入到跨組織的全體人員知識庫中。這使得物聯網的採用率放緩。
此外,因為安全問題,物聯網的大規模採用也“遇冷”。從數學的角度上來說,原因很簡單:跨越多個地點去連線數千個裝置,這無異於一個巨大且經常會處於未知狀態的資訊暴露。由於物聯網潛在的風險超過了其未經證實的好處,許多人認為,應採取觀望態度,保持謹慎。
超越物聯網1.0
現在越來越清晰的是,與其說邊緣計算是物聯網,倒不如說它是關於跨分散式站點和地理位置的操作進行實時決策。在IT領域和越來越多的工業環境中,我們將這些分散式資料來源稱為“邊緣”。我們將來自資料中心或雲之外的所有位置的決策稱為邊緣計算。
邊緣充斥著我們身邊的每一處角落——它在我們的生活、我們的工作當中,凡有人類活動的地方,它的身影無所不在。感測器覆蓋稀疏的問題已經被更新和更靈活的感測器解決了。新的資產和技術都配備了大量的整合感測器。現在,感測器經常增強了高解析度/高保真成像(x射線裝置,鐳射雷達)。
額外的感測器資料、成像技術以及將所有這些關聯起來的計算,會產生每秒兆位元組的資料。為了從這些巨大的資料流中得出最終結果,計算的“火力”現在都被部署在資料生成處的附近。
原因也很簡單:在邊緣位置和雲之間根本沒有足夠的頻寬和時間。處於邊緣的資料在短期內是最為重要的。資料現在可以在邊緣進行實時分析和使用,而不是稍後在雲中進行處理和分析。為了獲得更高一級水平的效率和卓越的操作,計算必須在邊緣中進行。
這並不是說雲並不重要。雲端計算仍然在邊緣計算中發揮作用,因為它是在所有位置中分配算力的一個好地方。例如,雲端計算提供了對來自其他地點的應用程式和資料的訪問,以及遠端專家對全球各地的系統、資料和應用程式的管理。此外,雲還可以用於分析跨越多個位置的大型資料集,顯示隨時間變化的趨勢,並生成預測分析模型。
因此,邊緣的關鍵,在於弄清跨越大量地理分散位置的大型資料流。人們必須採用這種對邊緣的新認知,才能真正理解現在邊緣計算所能實現的一切。
今天:實時邊緣分析
與幾年前相比,今天在邊緣所能做的事是驚人的。現在,人們可以透過大量的感測器和相機來生成資料,而不是將邊緣限制在幾個感測器上。然後,這些資料被放在邊緣,用比20年前強大數千倍的計算機進行分析——所有成本都是合理的。
高核心計數的CPU和GPU以及高通量網路和高解析度攝像頭現在隨處可見,這使得實時邊緣分析成為現實。在邊緣(業務活動發生的地方)部署實時分析可以幫助公司瞭解他們的操作並立即作出反應。有了這些知識,許多操作就可以進一步自動化,從而提高生產率並減少損失。
讓我們來考慮一下一些當今實時邊緣分析的例子:
· 超市欺詐預防
許多超市現在或多或少都會使用自助結賬,不幸的是,他們也看到了越來越多的欺詐行為。一個心存邪念的購物者可以用低價的條形碼代替高價的條形碼,這樣他付的錢就少了。為了發現這種型別的欺詐行為,商店現在正在使用高功率攝像頭,將掃描的產品和重量與其應有的重量進行比較。這些相機相對便宜,但它們卻會產生大量的資料。透過將計算移動到邊緣,就可以立即分析資料。這意味著,商店可以實時發現店內的欺詐行為,而不是在這些所謂的“顧客”離開停車場之後。
· 食品生產監測
如今,一個製造型工廠可以在製造過程的每一步都配備幾十個攝像頭和感測器。實時分析和人工智慧驅動的推理可以以毫秒、甚至微秒為單位,揭示是否有問題或工藝過程正在漂移。也許,攝像頭顯示太多的糖被新增,或者產品上新增了過多的澆頭。有了攝像頭和實時分析,生產線就可以調整生產線來停止漂移,甚至在需要維修時停下生產線——而不會造成災難性的損失。
· 人工智慧驅動的醫療保健邊緣計算
在醫療保健領域,紅外線和x射線攝像頭一直都在急劇改變著,因為它們解析度很高,並且能夠快速將圖片提供給技術人員和醫生。有了如此高的解析度,現在病人在見到醫生予以確認之前,人工智慧就可以進行過濾、評估和診斷異常。透過部署人工智慧驅動的邊緣計算,醫生們節省了時間,因為他們不必依賴向雲傳送資料來獲得診斷。因此,腫瘤學家想要觀察是否患者確患有肺癌,可以將實時人工智慧過濾器應用於患者的肺部影像,以獲得快速準確的診斷,這樣可以大大減少患者等待反饋的焦慮。
· 由分析系統驅動的自動駕駛汽車
自動駕駛汽車之所以在今天成為可能,是因為相對便宜和有效的相機提供了360度立體視覺。其分析系統還可以實現精確的影像識別,因此計算機可以精確辨別路上出現的到底是風滾草還是鄰居家的貓,並決定何時剎車還是轉向繞過障礙物,以確保駕乘安全。高效能CPU和GPU的可負擔性、可用性和小型化趨勢使得實時模式識別和向量規劃成為可能,這就是自動駕駛汽車的智慧駕駛。自動駕駛汽車成功的要點,在於必須有足夠的資料和處理能力,足夠快地做出智慧決策,以採取糾正措施。這一點現在只有透過如今的邊緣技術才能得以實現。
在實踐中的分散式體系結構
當非常強大的計算被部署在邊緣時,公司可以更好地最佳化操作,而不必擔心延遲或失去與雲的連線。現在所有的東西都分佈在邊緣位置,所以問題是實時解決的,彼此之間只有零星的連線。
自第一波邊緣技術出現以來,我們已經取得了長足的進展。由於邊緣技術的進步,公司現在對自己的業務有了更全面的看法。今天的邊緣技術不僅能幫助企業提高利潤,事實上,它還能幫助企業降低風險,改善產品、服務,以及提升與他們打交道的人的體驗。
翻譯:julian@邊緣計算社群
原文:
來自 “ 邊緣計算社群 ”, 原文作者:julian;原文連結:https://mp.weixin.qq.com/s/eK7DgbsSjfk3s3JZdo7m1A,如有侵權,請聯絡管理員刪除。
相關文章
- 邊緣計算與雲端計算
- 【雲端計算】數字化時代,邊緣計算參考架構架構
- 邊緣計算2.0時代,“雲邊緣”與“邊緣雲”你分清了嗎?
- 從雲端計算轉向邊緣計算
- 邊緣計算與雲端計算的未來
- 邊緣雲端計算簡介
- 邊緣計算、霧計算、雲端計算區別幾何?
- 邊緣計算 VS 雲端計算,誰才是未來?
- 本地計算、雲端計算、霧計算、邊緣計算有什麼區別?
- 為什麼邊緣計算將終止雲端計算?
- 邊緣計算的發展歷程
- 終於有人把雲端計算、邊緣計算、霧計算說清楚了
- 雲端計算設計模式-邊緣快取模式設計模式快取
- GSMA:5G時代的邊緣計算
- 邊緣雲端計算典型應用場景
- 蘇寧影片雲如何雲用邊緣計算擴充套件雲端計算的邊界的?套件
- 恆訊科技分析:使用邊緣計算和雲端計算各有何優勢?
- 【邊緣計算】劉陽:邊緣計算髮展中的若干熱點問題及思考
- 邊緣雲端計算標準化需求與建議
- 邊緣計算|Hadoop——邊緣計算和Hadoop是什麼關係?Hadoop
- 雲端計算都有哪些特點?展望雲端計算的發展前景
- 邊緣計算與資料中心的發展趨勢
- 邊緣計算平臺如何助力物聯網發展
- 阿里雲楊敬宇:5G時代,邊緣計算將發揮更大價值阿里
- 摩杜雲:以邊緣計算CDN技術為基礎,打造一站式邊緣化雲端計算服務
- 邊緣計算系列科普(五)邊緣計算中的關鍵技術
- 聚焦邊緣計算場景,打造雲邊端一體化容器雲平臺
- Rancher加入邊緣計算產業聯盟(ECC),軟體定義邊緣時代崛起產業
- 【邊緣計算】邊緣計算時代已經到來,巨頭們新的敵人是資料邊界;邊緣計算、AI晶片、垂直應用,2018人工智慧怎麼投AI晶片人工智慧
- 5G時代的邊緣計算:中國的技術和市場發展(80頁)
- IT巨頭押注雲端計算,全球雲端計算進入寡頭競爭時代
- 物聯網時代中關於邊緣計算那些事兒
- 詳解邊緣計算系統邏輯架構:雲、邊、端協同架構
- 邊緣計算 KubeEdge+EdgeMash
- 戴文軍:如何用邊緣計算+邊緣儲存打造新一代智慧影片雲
- 天翼雲邊緣函式、邊緣安全專案入選“可信邊緣計算推進計劃”函式
- 雲端計算開源產業聯盟:2019年雲端計算與邊緣計算協同九大應用場景(附下載)產業
- 雲原生與邊緣計算的碰撞——邊緣原生應用實踐