Problem
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bottom-top DP
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int[] dp = new int[triangle.size()+1];
for (int i = triangle.size()-1; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
dp[j] = Math.min(dp[j], dp[j+1]) + triangle.get(i).get(j);
}
}
return dp[0];
}
}
Non Extra Space DP
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int len = triangle.size();
for (int i = len-2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
int preMin = Math.min(triangle.get(i+1).get(j), triangle.get(i+1).get(j+1));
int curMin = preMin + triangle.get(i).get(j);
triangle.get(i).set(j, curMin);
}
}
return triangle.get(0).get(0);
}
}