初學者的程式設計自學指南

forrestchang發表於2016-02-18

 關於這份指南

  之前有不少學弟學妹問我如何學習程式設計,根據DRY法則(Don't Repeat Yourself),還是把自己學習過程中的一些經驗整理成一篇部落格吧。由於本人目前也處在學習的階段,文章中列出來的內容也並未全部學習過,所以文章的客觀性可能存在一些問題,還望讀者自行判斷。

  這份指南會不定期更新,有好的建議也可以留言或者給我發郵件。

 準備

  需要的所有工具就是一臺可以連線上網路的電腦以及你本人。

  科學上網

  很可惜,即使是現在,大部分學習計算機的學生還是不會科學上網。在當前的網路環境下,不會科學上網,意味著你不能用Google查資料,不能再Reddit看最新的資訊,需要忍受龜速的GitHub,云云。然而,科學上網本身卻是一件成本非常低的事情,不想折騰的話,一年花個幾百塊錢買個現成的服務;有折騰精神的人,可以買個伺服器自己假設架設上網工具。這一步很重要,不能跳過,否則後面指南中的許多內容對你來說只能是404了。

  關於科學上網的具體內容,就不再多說了,給你一個關鍵詞:Lantern。

  學會使用Google搜尋

  學會了科學上網,你就能夠使用Google了,為什麼不是Baidu?相信你用了Google之後就自然明白了。

  當了一個學期的助教之後發現,很多的同學其實是沒有使用搜尋引擎的意識的,遇到問題要麼自己死磕,或者就直接求助於他人。這兩種都不是很好的辦法,正確的做法是在自己思考後沒有結果,然後使用搜尋引擎查詢問題,現階段,你遇到的所有問題(幾乎)都能在Google上找到現成的答案,如果沒找到,肯定是你搜尋的方式不正確。

  使用Google的基本搜尋功能就能夠解決大部分問題了,當然,如果想要學習更加高階的技巧,這裡有一份指南:如何用好Google等搜尋引擎?

  英語

  你不得不承認,目前為止,程式設計世界的主流語言還是英文,所以英語能力的好壞決定了你程式設計能力的上界。中文資料和英文資料相比,實在是太匱乏了,就質量而言,也相對較低。比如我後面提到的很多的課程,都是英文的內容。

  值得慶幸的是,閱讀程式設計資料所需要的英文水平並不需要很高,就個人經驗來說,基本上四級水平就足夠了,可能還會存在一些生詞,但是基本上並不妨礙理解。

  英文的學習應該一直貫穿於程式設計的學習之中,作為一門工具語言,只需要花少量時間就可以帶來比較大的收益(2/8法則)。

  本人的英文水平也不算好,但是基本上能夠閱讀技術書籍和文件,能夠聽懂公開課,所以還是有一些簡單的經驗可以分享一下。

  把系統換成英文的

  有些同學可能看到英文就頭疼,這很正常,因為在中文的環境下面生活的太久了。為此,可以試著將平常用的系統換成英文的,雖說不能學到幾個單詞(Copy/Paste 之類的詞),但是可以讓你不那麼排斥英文,順便還可以提升一下B格(誤)。

  安裝電子詞典

  OS X下推薦歐路詞典,在APP Store中購買完整版的,因為需要新增外部的詞典。

  這裡推薦一部比較好的詞典:《Collins 英漢雙解詞典》,它是這個樣子的:

  主要看它的英文解釋,一個詞看得次數多了也就記住了。

  每天閱讀英文的資料

  一些個人經常閱讀的網站:

  • Quora:一個類似於知乎的問答類網站,可以挑自己感興趣的內容來閱讀。
  • Hacker News:IT資訊,IT界發生的最新的事件都會在上面。
  • PROGRAMMING:Reddit的Programming板塊,和Hacker News類似,不過更加專注於技術內容方面。

  不要花太多時間在上面,每天瀏覽一下就行。

  英文學習的總結

  英語不是能夠速成的東西,也不是三言兩語能夠講完的東西,這裡只是提供一個簡單的指導,具體的學習計劃還請自行搜尋更加專業的學習指南。

 程式設計基礎

  完成了這一部分內容的學習後你應該具備:

  • 瞭解什麼是Computer Science
  • 基本的計算機數學能力
  • 基本的程式開發能力
  • 基本的演算法與資料結構的知識

  電腦科學導論

  • Introduction to Computer Science and Programming:面向無程式設計基礎或者只有一點基礎的人群,使用Python作為教學語言。
  • Intensive Introduction to Computer Science Open Learning Course:CS50,哈佛很火的一門課,在網易公開課上可以找到翻譯的視訊內容。涵蓋的主題有演算法(設計、應用、分析);軟體開發(抽象、封裝、資料結構、Debug、測試);計算機體系結構等等。基本上是一門大雜燴的導論課。使用的語言是C、PHP、JavaScript。
  • Programming Abstractions:介紹了更加高階的程式設計主題(遞迴、演算法分析、資料抽象等等),使用C++作為教學語言。

  數學

  程式語言

  計算理論

  演算法與資料結構

  • Introduction to Algorithms:MIT的演算法導論課,用《演算法導論》作為教材,網上可以找到視訊資源,網易公開課上有老版的翻譯。

 核心課程

  學完了「程式設計基礎」部分的內容後,應該已經可以開發一些簡單的程式了,「核心課程」的內容將深入學習電腦科學理論的幾個重要的內容。

  數學

  計算理論

  演算法與資料結構

  作業系統

  程式語言理論

  計算機體系結構

  計算機網路

 程式設計工具

  IDE

  編輯器

  • Emacs/Vim
  • Sublime Text 3
  • VS Code
  • Atom

  並不一定要用Emacs或者Vim,ST其實已經很強大了,足夠做日常簡單的編輯工作。(這裡黑一下Atom,啟動速度太感人了,所以放在最後一個。)

  Git & GitHub

  使用版本控制來管理自己平時寫的程式碼。

  推薦閱讀:

 如何克服拖延

  資料是有了,但是拖延症不去學怎麼辦?

 參考資料

相關文章