引言
Python標準庫為我們提供了threading和multiprocessing模組編寫相應的多執行緒/多程式程式碼,但是當專案達到一定的規模,頻繁建立/銷燬程式或者執行緒是非常消耗資源的,這個時候我們就要編寫自己的執行緒池/程式池,以空間換時間。但從Python3.2開始,標準庫為我們提供了concurrent.futures
模組,它提供了ThreadPoolExecutor和ProcessPoolExecutor兩個類,實現了對threading和multiprocessing的進一步抽象,對編寫執行緒池/程式池提供了直接的支援。
Executor和Future
concurrent.futures模組的基礎是Exectuor
,Executor是一個抽象類,它不能被直接使用。但是它提供的兩個子類ThreadPoolExecutor
和ProcessPoolExecutor
卻是非常有用,顧名思義兩者分別被用來建立執行緒池和程式池的程式碼。我們可以將相應的tasks直接放入執行緒池/程式池,不需要維護Queue來操心死鎖的問題,執行緒池/程式池會自動幫我們排程。
Future
這個概念相信有java和nodejs下程式設計經驗的朋友肯定不陌生了,你可以把它理解為一個在未來完成的操作
,這是非同步程式設計的基礎,傳統程式設計模式下比如我們操作queue.get的時候,在等待返回結果之前會產生阻塞,cpu不能讓出來做其他事情,而Future的引入幫助我們在等待的這段時間可以完成其他的操作。關於在Python中進行非同步IO可以閱讀完本文之後參考我的Python併發程式設計之協程/非同步IO。
p.s: 如果你依然在堅守Python2.x,請先安裝futures模組。
1 |
pip install futures |
使用submit來操作執行緒池/程式池
我們先通過下面這段程式碼來了解一下執行緒池的概念
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
# example1.py from concurrent.futures import ThreadPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ThreadPoolExecutor(max_workers=2) # 建立一個最大可容納2個task的執行緒池 future1 = pool.submit(return_future_result, ("hello")) # 往執行緒池裡面加入一個task future2 = pool.submit(return_future_result, ("world")) # 往執行緒池裡面加入一個task print(future1.done()) # 判斷task1是否結束 time.sleep(3) print(future2.done()) # 判斷task2是否結束 print(future1.result()) # 檢視task1返回的結果 print(future2.result()) # 檢視task2返回的結果 |
我們根據執行結果來分析一下。我們使用submit方法來往執行緒池中加入一個task,submit返回一個Future物件,對於Future物件可以簡單地理解為一個在未來完成的操作。在第一個print語句中很明顯因為time.sleep(2)的原因我們的future1沒有完成,因為我們使用time.sleep(3)暫停了主執行緒,所以到第二個print語句的時候我們執行緒池裡的任務都已經全部結束。
1 2 3 4 5 6 7 8 9 10 |
ziwenxie :: ~ » python example1.py False True hello world # 在上述程式執行的過程中,通過ps命令我們可以看到三個執行緒同時在後臺執行 ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8361 7557 8361 3 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8362 0 3 19:45 pts/0 00:00:00 python example1.py ziwenxie 8361 7557 8363 0 3 19:45 pts/0 00:00:00 python example1.py |
上面的程式碼我們也可以改寫為程式池形式,api和執行緒池如出一轍,我就不羅嗦了。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
# example2.py from concurrent.futures import ProcessPoolExecutor import time def return_future_result(message): time.sleep(2) return message pool = ProcessPoolExecutor(max_workers=2) future1 = pool.submit(return_future_result, ("hello")) future2 = pool.submit(return_future_result, ("world")) print(future1.done()) time.sleep(3) print(future2.done()) print(future1.result()) print(future2.result()) |
下面是執行結果
1 2 3 4 5 6 7 8 9 10 11 |
ziwenxie :: ~ » python example2.py False True hello world ziwenxie :: ~ » ps -eLf | grep python ziwenxie 8560 7557 8560 3 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8563 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8560 7557 8564 0 3 19:53 pts/0 00:00:00 python example2.py ziwenxie 8561 8560 8561 0 1 19:53 pts/0 00:00:00 python example2.py ziwenxie 8562 8560 8562 0 1 19:53 pts/0 00:00:00 python example2.py |
使用map/wait來操作執行緒池/程式池
除了submit,Exectuor還為我們提供了map方法,和內建的map用法類似,下面我們通過兩個例子來比較一下兩者的區別。
使用submit操作回顧
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
# example3.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url, timeout): with urllib.request.urlopen(url, timeout=timeout) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: # Start the load operations and mark each future with its URL future_to_url = {executor.submit(load_url, url, 60): url for url in URLS} for future in concurrent.futures.as_completed(future_to_url): url = future_to_url[future] try: data = future.result() except Exception as exc: print('%r generated an exception: %s' % (url, exc)) else: print('%r page is %d bytes' % (url, len(data))) |
從執行結果可以看出,as_completed不是按照URLS列表元素的順序返回的。
1 2 3 4 |
ziwenxie :: ~ » python example3.py 'http://example.com/' page is 1270 byte 'https://api.github.com/' page is 2039 bytes 'http://httpbin.org' page is 12150 bytes |
使用map
1 2 3 4 5 6 7 8 9 10 11 |
# example4.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'https://api.github.com/'] def load_url(url): with urllib.request.urlopen(url, timeout=60) as conn: return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: for url, data in zip(URLS, executor.map(load_url, URLS)): print('%r page is %d bytes' % (url, len(data))) |
從執行結果可以看出,map是按照URLS列表元素的順序返回的,並且寫出的程式碼更加簡潔直觀,我們可以根據具體的需求任選一種。
1 2 3 4 |
ziwenxie :: ~ » python example4.py 'http://httpbin.org' page is 12150 bytes 'http://example.com/' page is 1270 bytes 'https://api.github.com/' page is 2039 bytes |
第三種選擇wait
wait方法接會返回一個tuple(元組),tuple中包含兩個set(集合),一個是completed(已完成的)另外一個是uncompleted(未完成的)。使用wait方法的一個優勢就是獲得更大的自由度,它接收三個引數FIRST_COMPLETED, FIRST_EXCEPTION 和ALL_COMPLETE,預設設定為ALL_COMPLETED。
我們通過下面這個例子來看一下三個引數的區別
1 2 3 4 5 6 7 8 9 10 11 12 |
from concurrent.futures import ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_random_secs(num): sleep(randint(1, 5)) return "Return of {}".format(num) pool = ThreadPoolExecutor(5) futures = [] for x in range(5): futures.append(pool.submit(return_after_random_secs, x)) print(wait(futures)) # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED')) |
如果採用預設的ALL_COMPLETED,程式會阻塞直到執行緒池裡面的所有任務都完成。
1 2 3 4 5 6 7 |
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f0b06c9bc88 state=finished returned str>, <Future at 0x7f0b06cbaa90 state=finished returned str>, <Future at 0x7f0b06373898 state=finished returned str>, <Future at 0x7f0b06352ba8 state=finished returned str>, <Future at 0x7f0b06373b00 state=finished returned str>}, not_done=set()) |
如果採用FIRST_COMPLETED引數,程式並不會等到執行緒池裡面所有的任務都完成。
1 2 3 4 5 6 7 |
ziwenxie :: ~ » python example5.py DoneAndNotDoneFutures(done={ <Future at 0x7f84109edb00 state=finished returned str>, <Future at 0x7f840e2e9320 state=finished returned str>, <Future at 0x7f840f25ccc0 state=finished returned str>}, not_done={<Future at 0x7f840e2e9ba8 state=running>, <Future at 0x7f840e2e9940 state=running>}) |
思考題
寫一個小程式對比multiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在執行效率上的差距,結合上面提到的Future思考為什麼會造成這樣的結果。
References
DOCUMENTATION OF CONCURRENT-FUTURES
歡迎大家拍磚、提意見。相互交流,共同進步!