劍指 offer 第一題: 二維陣列中的查詢

weixin_33806914發表於2019-02-26

題目描述

在一個二維陣列中(每個一維陣列的長度相同),每一行都按照從左到右遞增的順序排序,每一列都按照從上到下遞增的順序排序。請完成一個函式,輸入這樣的一個二維陣列和一個整數,判斷陣列中是否含有該整數。

題目分析

1940317-e320f5f3eaca8fd4.jpg
image

如果沒有頭緒的話,很顯然使用 暴力解法 是完全可以解決該問題的。

即遍歷二維陣列中的每一個元素,時間複雜度:O(n^2)。

其實到這裡我們就可以發現,使用這種暴力解法並沒有充分利用題目給出的資訊。這個二維陣列是有特點的。

  • 每一行都是遞增

  • 每一列都是遞增

1940317-492b26d2b422bce3.jpg
image

解法

解法一:二分法

對於有序陣列的查詢問題而言,二分法是最容易想到的一個解法。

在這裡,對每一行使用二分查詢,時間複雜度為 O(nlogn) 。二分查詢複雜度 O(logn),一共 n 行,所以是總體的時間複雜度是 O(nlogn) 。

解法二:規律法

根據二維陣列由上到下,由左到右遞增的規律。

從左下角開始遍歷,如果當前值比 target 小則往右找,如果比 target 大則往上找,如果存在,必然可以找到目標數字。

即選取右上角或者左下角的元素 a[row] [col] 與 target 進行比較, 當target小於元素 a[row] [col] 時,那麼 target 必定在元素 a 所在行的左邊,讓 col-- ;當 target 大於元素 a[row] [col] 時,那麼 target 必定在元素 a 所在列的下邊,讓 row++ ;

1940317-0e8693d0c057fcce.jpg
image

程式碼如下:

public class Solution {
 public boolean Find(int target, int [][] array) {
 int row = 0;
 int col = array[0].length - 1;
 while(row <= array.length - 1 && col >= 0){
 if(target == array[row][col])
 return true;
 else if(target > array[row][col])
 row++ ;
 else
 col-- ;
 }
 return false;
 }
}

解法三:二分規律法

將解法一和解法二進行結合:對每行每列都使用二分查詢,此時的時間複雜度為 O(logn * logm)

1940317-7f616489ff78fbb0.jpg
image

比如查詢數字 9,首先使用用二分查詢選出一行,總共有 5 行,那麼( 0 + 5 ) / 2 = 2,所以我們找出了第 2行為基準行。

1940317-a845dcc2ef57aef2.jpg
image

接下來對這一行(即第 2 行)又使用二分查詢, 找出這一行(即第 2 行)中最後一個比目標值小的值,這裡是 6。

1940317-8c29067b976e468a.jpg
image

6 及其所在的行和列把這個矩形劃分為 4 部分:

1940317-d61fefa2cb34eb3e.jpg
image
  1. 左上部分(圖 7 灰色部分),包括所在行的左邊部分和所在列的上邊部分:這一部分是絕對不會有目標數字的。因為這部分數字肯定比 6 小,而 6 又是小於目標數字的,所以左上部分全部小於目標數字。也就是說這個區域的數字不需要再進行判斷了。

  2. 右下部分(圖 7 綠色部分),包括所在行的右邊部分,但不包括所在列的下面部分, 這一部分也是絕對不會有目標數字的。因為這部分都比 6 右邊的數字 11 大,而 11 又比目標數字 9 更大,所以右下部分全部都比目標數字大。也就是說這個區域的數字也不需要再進行判斷了。

  3. 左下部分(圖 7 藍色部分),可能含有目標數字。

  4. 右上部分(圖 7 棕色部分),可能含有目標數字。

這樣,實際上篩選的區域就只剩下左下部分(圖 7 藍色部分)右上部分(圖 7 棕色部分)這兩塊區域了,相比於解法二而言,使用這種解法平均情況下每一次查詢,都可以把行和列的長度減少一半

程式碼如下:

public class Solution {
 public boolean Find(int target, int [][] array) {
 // 特殊情況處理
 if (array == null || array.length == 0 || array[0].length == 0) {
 return false;
 }
​
 int h = array.length - 1;
 int w = array[0].length - 1;
​
 // 如果目標值小於最小值 或者 目標值大於最大值,那肯定不存在
 if (array[0][0] > target || array[h][w] < target) {
 return false;
 }
 return binarySearchIn2DArray(array, target, 0, h, 0, w);
 }

 public static boolean binarySearchIn2DArray(int[][] array, int target, int startX, int endX, int startY, int endY) {
 if (startX > endX || startY > endY) {
 return false;
 }
 //首先,根據二分法找出中間行
 int x = (startX + endX) / 2;
 //對該行進行二分查詢
 int result = binarySearch(array[x], target, startY, endY);
 //找到的值位於 x 行,result 列
 if (array[x][result] == target) {
 return true; // 如果找到則成功
 }
 //對剩餘的兩部分分別進行遞迴查詢
 return binarySearchIn2DArray(array, target, startX, x - 1, result + 1, endY)
 || binarySearchIn2DArray(array, target, x + 1, endX, startY, result);
 }
​
 public static int binarySearch(int[] array, int target, int start, int end) {
 int i = (start + end) / 2;
 if (array[i] == target || start > end) { 
 return i;
 } else if (array[i] > target) {
 return binarySearch(array, target, start, i - 1);
 } else {
 return binarySearch(array, target, i + 1, end);
 }
 }
}

相關文章