二叉樹前序、中序、後序遍歷相互求法(code留著看,概念先看了)

PengPengBlog發表於2017-02-28

今天來總結下二叉樹前序、中序、後序遍歷相互求法,即如果知道兩個的遍歷,如何求第三種遍歷方法,比較笨的方法是畫出來二叉樹,然後根據各種遍歷不同的特性來求,也可以程式設計求出,下面我們分別說明。

首先,我們看看前序、中序、後序遍歷的特性: 
前序遍歷: 
    1.訪問根節點 
    2.前序遍歷左子樹 
    3.前序遍歷右子樹 
中序遍歷: 
    1.中序遍歷左子樹 
    2.訪問根節點 
    3.中序遍歷右子樹 
後序遍歷: 
    1.後序遍歷左子樹 
    2.後序遍歷右子樹 
    3.訪問根節點

一、已知前序、中序遍歷,求後序遍歷

例:

前序遍歷:         GDAFEMHZ

中序遍歷:         ADEFGHMZ

畫樹求法:
第一步,根據前序遍歷的特點,我們知道根結點為G

第二步,觀察中序遍歷ADEFGHMZ。其中root節點G左側的ADEF必然是root的左子樹,G右側的HMZ必然是root的右子樹。

 第三步,觀察左子樹ADEF,左子樹的中的根節點必然是大樹的root的leftchild。在前序遍歷中,大樹的root的leftchild位於root之後,所以左子樹的根節點為D。

第四步,同樣的道理,root的右子樹節點HMZ中的根節點也可以通過前序遍歷求得。在前序遍歷中,一定是先把root和root的所有左子樹節點遍歷完之後才會遍歷右子樹,並且遍歷的左子樹的第一個節點就是左子樹的根節點。同理,遍歷的右子樹的第一個節點就是右子樹的根節點。

第五步,觀察發現,上面的過程是遞迴的。先找到當前樹的根節點,然後劃分為左子樹,右子樹,然後進入左子樹重複上面的過程,然後進入右子樹重複上面的過程。最後就可以還原一棵樹了。該步遞迴的過程可以簡潔表達如下:

1 確定根,確定左子樹,確定右子樹。

2 在左子樹中遞迴。

3 在右子樹中遞迴。

4 列印當前根。

那麼,我們可以畫出這個二叉樹的形狀:

那麼,根據後序的遍歷規則,我們可以知道,後序遍歷順序為:AEFDHZMG

程式設計求法:(依據上面的思路,寫遞迴程式)

 1 #include <iostream>  
 2 #include <fstream>  
 3 #include <string>  
 4 
 5 struct TreeNode
 6 {
 7   struct TreeNode* left;
 8   struct TreeNode* right;
 9   char  elem;
10 };
11 
12 void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
13 {
14   if(length == 0)
15     {
16       //cout<<"invalid length";
17       return;
18     }
19   TreeNode* node = new TreeNode;//Noice that [new] should be written out.
20   node->elem = *preorder;
21   int rootIndex = 0;
22   for(;rootIndex < length; rootIndex++)
23     {
24       if(inorder[rootIndex] == *preorder)
25       break;
26     }
27   //Left
28   BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
29   //Right
30   BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
31   cout<<node->elem<<endl;
32   return;
33 }
34 
35 
36 int main(int argc, char* argv[])
37 {
38     printf("Hello World!\n");
39     char* pr="GDAFEMHZ";
40     char* in="ADEFGHMZ";
41   
42     BinaryTreeFromOrderings(in, pr, 8);
43 
44     printf("\n");
45     return 0;
46 }

輸出的結果為:AEFDHZMG

二、已知中序和後序遍歷,求前序遍歷

依然是上面的題,這次我們只給出中序和後序遍歷:

中序遍歷:       ADEFGHMZ

後序遍歷:       AEFDHZMG

畫樹求法:
第一步,根據後序遍歷的特點,我們知道後序遍歷最後一個結點即為根結點,即根結點為G。

第二步,觀察中序遍歷ADEFGHMZ。其中root節點G左側的ADEF必然是root的左子樹,G右側的HMZ必然是root的右子樹。

第三步,觀察左子樹ADEF,左子樹的中的根節點必然是大樹的root的leftchild。在前序遍歷中,大樹的root的leftchild位於root之後,所以左子樹的根節點為D。

第四步,同樣的道理,root的右子樹節點HMZ中的根節點也可以通過前序遍歷求得。在前後序遍歷中,一定是先把root和root的所有左子樹節點遍歷完之後才會遍歷右子樹,並且遍歷的左子樹的第一個節點就是左子樹的根節點。同理,遍歷的右子樹的第一個節點就是右子樹的根節點。

第五步,觀察發現,上面的過程是遞迴的。先找到當前樹的根節點,然後劃分為左子樹,右子樹,然後進入左子樹重複上面的過程,然後進入右子樹重複上面的過程。最後就可以還原一棵樹了。該步遞迴的過程可以簡潔表達如下:

1 確定根,確定左子樹,確定右子樹。

2 在左子樹中遞迴。

3 在右子樹中遞迴。

4 列印當前根。

這樣,我們就可以畫出二叉樹的形狀,如上圖所示,這裡就不再贅述。

那麼,前序遍歷:         GDAFEMHZ

程式設計求法:(並且驗證我們的結果是否正確)

#include <iostream>
#include <fstream>
#include <string>

struct TreeNode
{
    struct TreeNode* left;
    struct TreeNode* right;
    char  elem;
};


TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length)
{
    if(length == 0)
    {
        return NULL;
    }
    TreeNode* node = new TreeNode;//Noice that [new] should be written out.
    node->elem = *(aftorder+length-1);
    std::cout<<node->elem<<std::endl;
    int rootIndex = 0;
    for(;rootIndex < length; rootIndex++)//a variation of the loop
    {
        if(inorder[rootIndex] ==  *(aftorder+length-1))
            break;
    }
    node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex);
    node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1));
    
    return node;
}

int main(int argc, char** argv)
{
    char* af="AEFDHZMG";    
    char* in="ADEFGHMZ"; 
    BinaryTreeFromOrderings(in, af, 8); 
    printf("\n");
    return 0;
}

輸出結果:GDAFEMHZ

相關文章