Python八大演算法的實現,插入排序、希爾排序、氣泡排序、快速排序、直接選擇排序、堆排序、歸併排序、基數排序。
1、插入排序
描述
插入排序的基本操作就是將一個資料插入到已經排好序的有序資料中,從而得到一個新的、個數加一的有序資料,演算法適用於少量資料的排序,時間複雜度為O(n^2)。是穩定的排序方法。插入演算法把要排序的陣列分成兩部分:第一部分包含了這個陣列的所有元素,但將最後一個元素除外(讓陣列多一個空間才有插入的位置),而第二部分就只包含這一個元素(即待插入元素)。在第一部分排序完成後,再將這個最後元素插入到已排好序的第一部分中。
程式碼實現
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
2、希爾排序
描述
希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。該方法因DL.Shell於1959年提出而得名。 希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個檔案恰被分成一組,演算法便終止。
程式碼實現
def shell_sort(lists):
# 希爾排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
3、氣泡排序
描述
它重複地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重複地進行直到沒有再需要交換,也就是說該數列已經排序完成。
程式碼實現
def bubble_sort(lists):
# 氣泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
lists[i], lists[j] = lists[j], lists[i]
return lists
4、快速排序
描述
通過一趟排序將要排序的資料分割成獨立的兩部分,其中一部分的所有資料都比另外一部分的所有資料都要小,然後再按此方法對這兩部分資料分別進行快速排序,整個排序過程可以遞迴進行,以此達到整個資料變成有序序列。
程式碼實現
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
5、直接選擇排序
描述
基本思想:第1趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;第2趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;以此類推,第i趟在待排序記錄r[i] ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。
程式碼實現
def select_sort(lists):
# 選擇排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
lists[min], lists[i] = lists[i], lists[min]
return lists
6、堆排序
描述
堆排序(Heapsort)是指利用堆積樹(堆)這種資料結構所設計的一種排序演算法,它是選擇排序的一種。可以利用陣列的特點快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個節點的值都不大於其父節點的值,即A[PARENT[i]] >= A[i]。在陣列的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
程式碼實現
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
def build_heap(lists, size):
for i in range(0, (size / 2))[::-1]:
adjust_heap(lists, i, size)
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
7、歸併排序
描述
歸併排序是建立在歸併操作上的一種有效的排序演算法,該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱為二路歸併。
歸併過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]複製到r[k]中,並令i和k分別加上1;否則將第二個有序表中的元素a[j]複製到r[k]中,並令j和k分別加上1,如此迴圈下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素複製到r中從下標k到下標t的單元。歸併排序的演算法我們通常用遞迴實現,先把待排序區間[s,t]以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸併操作合併成有序的區間[s,t]。
程式碼實現
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 歸併排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
8、基數排序
描述
基數排序(radix sort)屬於“分配式排序”(distribution sort),又稱“桶子法”(bucket sort)或bin sort,顧名思義,它是透過鍵值的部份資訊,將要排序的元素分配至某些“桶”中,藉以達到排序的作用,基數排序法是屬於穩定性的排序,其時間複雜度為O (nlog(r)m),其中r為所採取的基數,而m為堆數,在某些時候,基數排序法的效率高於其它的穩定性排序法。
程式碼實現
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
相關文章
- 排序演算法(氣泡排序,選擇排序,插入排序,希爾排序)排序演算法
- php插入排序,快速排序,歸併排序,堆排序PHP排序
- php實現 氣泡排序,插入排序,選擇排序PHP排序
- 七、排序,選擇、冒泡、希爾、歸併、快速排序實現排序
- python實現氣泡排序、插入排序以及快速排序演算法Python排序演算法
- PHP 常見4種排序 氣泡排序、選擇排序、插入排序、快速排序PHP排序
- (建議收藏)2020最新排序演算法總結:冒泡、選擇、插入、希爾、快速、歸併、堆排序、基數排序排序演算法
- 排序演算法 - 快速插入排序和希爾排序排序演算法
- 氣泡排序、歸併排序與快速排序比較排序
- 演算法之常見排序演算法-氣泡排序、歸併排序、快速排序演算法排序
- 排序演算法 - 氣泡排序和選擇排序排序演算法
- 三種插入排序 直接插入排序,折半插入排序,希爾排序排序
- 利用java實現插入排序、歸併排序、快排和堆排序Java排序
- 排序:氣泡排序&快速排序排序
- 【排序】插入類排序—(折半)插入排序、希爾排序排序
- 選擇排序和氣泡排序排序
- 氣泡排序與選擇排序排序
- 【小小前端】前端排序演算法第一期(氣泡排序、選擇排序、插入排序)前端排序演算法
- go 實現氣泡排序和插入排序Go排序
- 演算法(氣泡排序,快排,歸併排序)演算法排序
- Java實現氣泡排序和插入排序演算法Java排序演算法
- 【JS面試向】選擇排序、桶排序、氣泡排序和快速排序簡介JS面試排序
- 9. 氣泡排序,以及如何優化氣泡排序,氣泡排序屬於插入排序排序優化
- ForkJoin和氣泡排序組合實現的歸併排序排序
- Go實現氣泡排序和快速排序Go排序
- 用JS實現氣泡排序和插入排序JS排序
- 氣泡排序 插入排序 快排排序
- 經常提及的幾個js排序方法(氣泡排序、選擇排序、計數排序)JS排序
- php實現 歸併排序,快速排序PHP排序
- 氣泡排序和選擇排序流程圖排序流程圖
- 氣泡排序和選擇排序詳解排序
- 快速排序&&歸併排序排序
- 排序——氣泡排序排序
- 排序演算法:Java實現希爾排序排序演算法Java
- 重學資料結構和演算法(四)之氣泡排序、插入排序、選擇排序資料結構演算法排序
- 排序演算法__希爾排序排序演算法
- 【排序演算法】- 希爾排序排序演算法
- 排序演算法--氣泡排序排序演算法