Handler原始碼剖析

haozhn發表於2018-04-17

什麼是handler?

熟悉Android開發的一定都知道Handler對於Android開發的重要性吧,Android主執行緒(UI執行緒)阻塞5s以上就會ANR,所以通常情況下耗時操作都是在子執行緒完成,當子執行緒完成耗時操作後,在通過Handler通知主執行緒去更新UI,最常見的使用場景就是在網路請求完成的時候,將網路請求的資料傳給主執行緒,所以Handler的作用就是完成執行緒間通訊。

最簡單的執行緒間通訊

我們想一下Android中Handler的使用步驟吧。

  • 主執行緒中定義一個Handler,並覆寫它的handlerMessage方法。
private Handler mHandler = new Handler() {
    @Override
    public void handleMessage(Message msg) {
        super.handleMessage(msg);
        //update UI
    }
};
複製程式碼
  • 在子執行緒耗時操作完成後建立一個message物件,並通過呼叫handler.sendMessage方法將這個message傳送給主執行緒
new Thread(new Runnable() {
    @Override
    public void run() {
        // do someting
        Message message = Message.obtain();
        mHandler.sendMessage(message);
    }
}).start();
複製程式碼

Java程式中要實現執行緒間通訊要如何做呢?

  • 先定義一個Message物件,這裡我們只在Message中定義一個字串
public class Message {
    public String msg;
}
複製程式碼
  • 再定義一個IHandler介面
public interface IHandler {
    void handleMessage(Message msg);
}
複製程式碼
  • 下面我們寫一段普通的java程式碼
public class Main {
    public static void main(String[] args) {
        IHandler handler = new IHandler() {
            @Override
            public void handleMessage(Message message) {
                System.out.println("main thread receive a message: " + message.msg);
            }
        };
        new SubThread(handler).start();
    }

    private static class SubThread extends Thread {
        private IHandler mHandler;

        public SubThread(IHandler handler) {
            mHandler = handler;
        }

        @Override
        public void run() {
            super.run();
            while (true) {
                try {
                    Thread.sleep(1000);
                    Message message = new Message();
                    message.msg = "hello";
                    mHandler.handleMessage(message);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}
複製程式碼

執行結果:

main thread receive a message: hello
main thread receive a message: hello
main thread receive a message: hello
······
······
複製程式碼

這就是最簡單的執行緒通訊,通過介面回撥將子執行緒中的Message傳遞給主執行緒去處理。Android中的Handler當然不是用這種方式實現的了,但是對於類與類之間的通訊,介面回撥是最簡單最通用的方法了

下面我們參照Android中的方式實現一個Handler工具吧。Android的Handler在Java層包括了Handler,Looper,Message和MessageQueue四個類。其中Handler的主要作用是傳送和處理訊息,sendMessage會將新的Message加入到MessageQueue中。Looper是一個輪詢器,檢查MessageQueue中是否有Message,如果有Message就取出來分發給對應的Handler去處理。

  • Message不用多做處理,只需要增加一個目標Handler就可以了
public class Message {
    public Handler target;
    public String msg;
}
複製程式碼
  • MessageQueue是一個先進先出的佇列,為了方便實現我們使用java提供的LinkedBlockingQueue來實現
public class MessageQueue {
    private LinkedBlockingQueue<Message> messageList;

    public MessageQueue() {
        messageList = new LinkedBlockingQueue<>();
    }

    public void enqueueMessage(Message msg) {
        messageList.add(msg);
    }

    public Message next() {
        return messageList.poll();
    }
}
複製程式碼
  • Looper是和執行緒繫結的,一個執行緒裡只能有一個Looper,所以Looper應該儲存在ThreadLocal中。Looper的初始化應該放到Looper.prepare中去完成。
public class Looper {
    private static ThreadLocal<Looper> sThreadLocal = new ThreadLocal<>();
    final MessageQueue mQueue;
    final Thread mThread;

    public Looper() {
        mQueue = new MessageQueue();
        mThread = Thread.currentThread();
    }

    public static void prepare() {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper());
    }


    public static Looper myLooper() {
        return sThreadLocal.get();
    }

    public static void loop() {
        final Looper me = myLooper();
        final MessageQueue queue = me.mQueue;
        for (; ; ) {
            Message msg = queue.next();
            if (msg == null) {
                continue;
            }
            msg.target.dispatchMessage(msg);
        }
    }
}
複製程式碼
  • 最後看一下Handler的實現
public class Handler {

    private Looper mLooper;
    private MessageQueue mQueue;

    public Handler() {
        mLooper = Looper.myLooper();
        mQueue = mLooper.mQueue;
    }

    public void sendMessage(Message msg) {
        msg.target = this;
        mQueue.enqueueMessage(msg);
    }

    public void dispatchMessage(Message msg) {
        handleMessage(msg);
    }

    public void handleMessage(Message msg) {
    }
}
複製程式碼

我們依然用之前例子裡的程式碼來測試

public class Main {

    public static void main(String[] args) {
        Looper.prepare();
        Handler handler = new Handler() {
            @Override
            public void handleMessage(Message message) {
                super.handleMessage(message);
                System.out.println("main thread receive a message: " + message.msg);
            }
        };
        new SubThread(handler).start();
        Looper.loop();
    }

    private static class SubThread extends Thread {
        private Handler mHandler;

        public SubThread(Handler handler) {
            mHandler = handler;
        }

        @Override
        public void run() {
            super.run();
            while (true) {
                try {
                    Thread.sleep(1000);
                    Message message = new Message();
                    message.msg = "hello";
                    mHandler.handleMessage(message);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}
複製程式碼

輸出結果

main thread receive a message: hello
main thread receive a message: hello
main thread receive a message: hello
······
······
複製程式碼

一個簡單的Handler模擬程式就這樣完成了。

深入分析

上面我們用幾十行程式碼實現的那個玩具Handler只是為了讓我們更好的理解Handler機制,Android實際中的Handler要複雜的多,更重要的是Android中Handler的實現不止包含了java程式碼,還包含了native呼叫

private native static long nativeInit();
private native static void nativeDestroy(long ptr);
private native void nativePollOnce(long ptr, int timeoutMillis); /*non-static for callbacks*/
private native static void nativeWake(long ptr);
private native static boolean nativeIsPolling(long ptr);
private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);
複製程式碼

這幾個native方法主要的作用是什麼呢?在之前的Demo程式我們的loop方法實現是如果Message為空的時候就continue,這就造成了明明訊息佇列裡沒有訊息,Looper依然在那裡空轉浪費cpu資源。native方法就是解決這個問題的。

MessageQueue的建立

這幾個native方法都是在MessageQueue中定義,所以我們就先來研究一下MessageQueue建立。

構造方法

MessageQueue(boolean quitAllowed) {
    mQuitAllowed = quitAllowed;
    mPtr = nativeInit();
}
複製程式碼

mQuitAllowed表示這個訊息佇列能不能退出,除了主執行緒外,其他執行緒的訊息佇列都是可以退出的。
mPtr儲存了native方法nativeInit()方法的返回值,這個值我們後面會用到,先看下nativeInit()做了什麼吧。

nativeInit呼叫的是android_os_MessageQueue.cpp裡面的方法

static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
    NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
    if (!nativeMessageQueue) {
        jniThrowRuntimeException(env, "Unable to allocate native queue");
        return 0;
    }

    nativeMessageQueue->incStrong(env);
    return reinterpret_cast<jlong>(nativeMessageQueue);
}
複製程式碼

從上面的程式碼我們知道,nativeInit建立了一個NativeMessageQueue物件,並將它的指標強轉成了Java中的long型別儲存在mPtr中,我們可以這樣理解,MessageQueue.java中儲存了一份NativeMessageQueue的指標,在需要的時候,mPtr可以傳給native方法並轉換成NativeMessageQueue物件。

NativeMessageQueue的構造方法

NativeMessageQueue::NativeMessageQueue() :
        mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
    mLooper = Looper::getForThread();
    if (mLooper == NULL) {
        mLooper = new Looper(false);
        Looper::setForThread(mLooper);
    }
}
複製程式碼

上面的程式碼的作用很簡單,如果ThreadLocal中有Looper物件就返回。如果沒有就new一個Looper物件,並將其儲存在ThreadLocal中。

Looper.cpp的建構函式

Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
        mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
    LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd: %s",
                        strerror(errno));

    AutoMutex _l(mLock);
    rebuildEpollLocked();
}
複製程式碼

上面的程式碼有一個關鍵的方法eventfd,這個具體的作用可參看Linux程式間通訊-eventfd,簡單講的話這個就是linux程式間通訊的一種方式,Linux核心空間維護了一個64位的計數器,可以一個程式呼叫write寫入一個數,另一個程式呼叫read讀出來。

最後一個函式

void Looper::rebuildEpollLocked() {
    // Close old epoll instance if we have one.
    if (mEpollFd >= 0) {
        close(mEpollFd);
    }

    // Allocate the new epoll instance and register the wake pipe.
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));

    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeEventFd;
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance: %s",
                        strerror(errno));

    for (size_t i = 0; i < mRequests.size(); i++) {
        const Request& request = mRequests.valueAt(i);
        struct epoll_event eventItem;
        request.initEventItem(&eventItem);

        int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
        if (epollResult < 0) {
            ALOGE("Error adding epoll events for fd %d while rebuilding epoll set: %s",
                  request.fd, strerror(errno));
        }
    }
}
複製程式碼

這個裡面也有兩個關鍵的方法epoll_create和epoll_ctl,epoll的具體講解可以看這個。簡單說就是epoll可以監控很多個檔案描述符,並註冊想要監控的事件。mWakeEventFd是之前我們建立的那個eventfd的檔案描述符,EPOLLIN表示寫事件。所以

int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem)
複製程式碼

這行程式碼的含義就是當eventfd有寫入事件時觸發。

sendMessage的流程

我們先來看一下Handler中sendMessage大致的時序圖

Handler原始碼剖析

  1. Handler呼叫自身的方法
public final boolean sendMessage(Message msg)
{
    return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}
複製程式碼
  1. MessageQueue呼叫enqueueMessage方法
boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // 第一個訊息;需要喚醒Looper
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // 按照時間排序找到合適的插入點,這種情況通常不需要喚醒Looper,但是如果同步分隔欄且是第一個非同步訊息就需要喚醒Looper
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}
複製程式碼

上面程式碼是Message加入佇列的過程,Message入隊過程並不像我們Demo裡寫的那樣先進先出的,而是按照執行時間進行排序,如果這個Message是佇列裡面的第一個Message,則需要喚醒Looper。我們假設我們傳送的Message就是第一個,那麼就會觸發nativeWake方法,傳入的引數就是我們在MessageQueue建構函式中儲存的指標mPtr,這個指標指向NativeMessageQueue。

  1. android_os_MessageQueue.cpp中的android_os_MessageQueue_nativeWake
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->wake();
}
複製程式碼
  1. NativeMessageQueue呼叫wake方法
void NativeMessageQueue::wake() {
    mLooper->wake();
}
複製程式碼
  1. Looper.cpp呼叫wake方法
void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ wake", this);
#endif
    uint64_t inc = 1;
    // 向eventfd中寫入1
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
        if (errno != EAGAIN) {
            LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",
                    mWakeEventFd, strerror(errno));
        }
    }
}
複製程式碼

mWakeEventFd就是在Looper的構造方法中建立的eventfd的檔案描述符。上述程式碼的作用就是向eventfd中寫入一個1。還記得Looper構造方法中的epoll嗎?epoll正在監聽eventfd的寫事件,現在已經觸發了。觸發了什麼事呢?我們接著往下分析。

handleMessage的流程

我們先來看一下Handler中handleMessage大致的時序圖

Handler原始碼剖析

  1. Looper中的loop
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        //訊息佇列為空的時候會阻塞
        Message msg = queue.next(); 
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        final long traceTag = me.mTraceTag;
        if (traceTag != 0) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }
        try {
            msg.target.dispatchMessage(msg);
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}
複製程式碼

無限迴圈取Message,取到Message後呼叫msg.target.dispatchMessage(msg)分發給對應的Handler處理,看著似乎跟我們Demo裡是一樣的,但關鍵點就在於

Message msg = queue.next();
複製程式碼

這個操作是會阻塞的,還記得Looper.cpp裡面的wake有個喚醒操作嗎?這個喚醒操作就是為了喚醒queue.next()的。

  1. MessageQueue的next方法
Message next() {
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }
        nativePollOnce(ptr, nextPollTimeoutMillis);
        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }
            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }
            
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }
            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }
        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler
            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }
            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }
        pendingIdleHandlerCount = 0;
        nextPollTimeoutMillis = 0;
    }
}
複製程式碼

當MessageQueue裡面沒有訊息時nativePollOnce(ptr, nextPollTimeoutMillis)會阻塞

  1. android_os_MessageQueue.cpp中的nativePollOnce
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}
複製程式碼
  1. NativeMessageQueue中的pollOnce方法
void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    mPollEnv = env;
    mPollObj = pollObj;
    mLooper->pollOnce(timeoutMillis);
    mPollObj = NULL;
    mPollEnv = NULL;

    if (mExceptionObj) {
        env->Throw(mExceptionObj);
        env->DeleteLocalRef(mExceptionObj);
        mExceptionObj = NULL;
    }
}
複製程式碼
  1. Looper.cpp中的pollOnce方法
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {
        while (mResponseIndex < mResponses.size()) {
            const Response& response = mResponses.itemAt(mResponseIndex++);
            int ident = response.request.ident;
            if (ident >= 0) {
                int fd = response.request.fd;
                int events = response.events;
                void* data = response.request.data;
                if (outFd != NULL) *outFd = fd;
                if (outEvents != NULL) *outEvents = events;
                if (outData != NULL) *outData = data;
                return ident;
            }
        }

        if (result != 0) {
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }
        result = pollInner(timeoutMillis);
    }
}
複製程式碼
  1. Looper.cpp中的pollInner方法
int Looper::pollInner(int timeoutMillis) {

    // Poll.
    int result = POLL_WAKE;
    mResponses.clear();
    mResponseIndex = 0;

    // We are about to idle.
    mPolling = true;

    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    // 等待eventfd中的寫事件觸發
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeEventFd) {
            if (epollEvents & EPOLLIN) {
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
            }
        }
    }
    return result;
}
複製程式碼

pollInner中程式碼很長,我刪去了一些不相關的程式碼,主要就是這行程式碼

struct epoll_event eventItems[EPOLL_MAX_EVENTS];
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
複製程式碼

epoll_wait會一直等待eventfd中的寫事件觸發,如果沒有就會阻塞。

  1. 最後的awoken
void Looper::awoken() {
    uint64_t counter;
    TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}
複製程式碼

讀取eventfd中儲存的資料,read操作後eventfd會置0,重新陷入阻塞

總結

  1. Looper呼叫prepare方法建立MessageQueue
  2. MessageQueue建立的時候同時呼叫jni方法建立了eventfd和epoll,epoll監聽eventfd上的寫事件。
  3. Looper呼叫loop方法進入迴圈。
  4. 執行到nativePollOnce時,由於eventfd計數器的值為0陷入阻塞。
  5. Handler呼叫sendMessage傳送訊息。
  6. message加入到MessageQueue,同時執行nativeWake方法向eventfd寫入一個數字1。
  7. nativePollOnce阻塞解除,分發Message給對應的Handler。
  8. 讀取eventfd中的資料,eventfd置0。nativePollOnce繼續阻塞。

相關文章