構建企業級 Agent 系統:核心元件設計與最佳化

muzinan110發表於2024-11-18

引言

構建企業級 AI Agent 系統需要仔細考慮元件設計、系統架構和工程實踐。本文將探討構建穩健可擴充套件的 Agent 系統的關鍵元件和最佳實踐。

1. Prompt 模板工程

1.1 模板設計模式

from typing import Protocol, Dict
from jinja2 import Template

class PromptTemplate(Protocol):
    def render(self, **kwargs) -> str:
        pass

class JinjaPromptTemplate:
    def __init__(self, template_string: str):
        self.template = Template(template_string)
    
    def render(self, **kwargs) -> str:
        return self.template.render(**kwargs)

class PromptLibrary:
    def __init__(self):
        self.templates: Dict[str, PromptTemplate] = {}
        
    def register_template(self, name: str, template: PromptTemplate):
        self.templates[name] = template
        
    def get_template(self, name: str) -> PromptTemplate:
        return self.templates[name]

1.2 版本控制與測試

class PromptVersion:
    def __init__(self, version: str, template: str, metadata: dict):
        self.version = version
        self.template = template
        self.metadata = metadata
        self.test_cases = []
        
    def add_test_case(self, inputs: dict, expected_output: str):
        self.test_cases.append((inputs, expected_output))
        
    def validate(self) -> bool:
        template = JinjaPromptTemplate(self.template)
        for inputs, expected in self.test_cases:
            result = template.render(**inputs)
            if not self._validate_output(result, expected):
                return False
        return True

2. 分層記憶系統

2.1 記憶架構

from typing import Any, List
from datetime import datetime

class MemoryEntry:
    def __init__(self, content: Any, importance: float):
        self.content = content
        self.importance = importance
        self.timestamp = datetime.now()
        self.access_count = 0

class MemoryLayer:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.memories: List[MemoryEntry] = []
        
    def add(self, entry: MemoryEntry):
        if len(self.memories) >= self.capacity:
            self._evict()
        self.memories.append(entry)
        
    def _evict(self):
        # 實現記憶淘汰策略
        self.memories.sort(key=lambda x: x.importance * x.access_count)
        self.memories.pop(0)

class HierarchicalMemory:
    def __init__(self):
        self.working_memory = MemoryLayer(capacity=5)
        self.short_term = MemoryLayer(capacity=50)
        self.long_term = MemoryLayer(capacity=1000)
        
    def store(self, content: Any, importance: float):
        entry = MemoryEntry(content, importance)
        
        if importance > 0.8:
            self.working_memory.add(entry)
        elif importance > 0.5:
            self.short_term.add(entry)
        else:
            self.long_term.add(entry)

2.2 記憶檢索與索引

from typing import List, Tuple
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

class MemoryIndex:
    def __init__(self, embedding_model):
        self.embedding_model = embedding_model
        self.embeddings = []
        self.memories = []
        
    def add(self, memory: MemoryEntry):
        embedding = self.embedding_model.embed(memory.content)
        self.embeddings.append(embedding)
        self.memories.append(memory)
        
    def search(self, query: str, k: int = 5) -> List[Tuple[MemoryEntry, float]]:
        query_embedding = self.embedding_model.embed(query)
        similarities = cosine_similarity(
            [query_embedding], 
            self.embeddings
        )[0]
        
        top_k_indices = np.argsort(similarities)[-k:]
        
        return [
            (self.memories[i], similarities[i]) 
            for i in top_k_indices
        ]

3. 可觀測推理鏈路

3.1 鏈路結構

from typing import List, Optional
from dataclasses import dataclass
import uuid

@dataclass
class ThoughtNode:
    content: str
    confidence: float
    supporting_evidence: List[str]
    
class ReasoningChain:
    def __init__(self):
        self.chain_id = str(uuid.uuid4())
        self.nodes: List[ThoughtNode] = []
        self.metadata = {}
        
    def add_thought(self, thought: ThoughtNode):
        self.nodes.append(thought)
        
    def get_path(self) -> List[str]:
        return [node.content for node in self.nodes]
    
    def get_confidence(self) -> float:
        if not self.nodes:
            return 0.0
        return sum(node.confidence for node in self.nodes) / len(self.nodes)

4. 元件解耦與複用

4.1 模組化設計

from abc import ABC, abstractmethod
from typing import Any, Dict

class Component(ABC):
    @abstractmethod
    def process(self, input_data: Any) -> Any:
        pass

class ComponentRegistry:
    def __init__(self):
        self._components: Dict[str, Component] = {}
    
    def register(self, name: str, component: Component):
        self._components[name] = component
    
    def get(self, name: str) -> Component:
        return self._components[name]

class Pipeline:
    def __init__(self, registry: ComponentRegistry):
        self.registry = registry
        self.steps = []
    
    def add_step(self, component_name: str):
        self.steps.append(component_name)
    
    def execute(self, input_data: Any) -> Any:
        result = input_data
        for step in self.steps:
            component = self.registry.get(step)
            result = component.process(result)
        return result

5. 效能監控與調優

5.1 效能指標收集

from dataclasses import dataclass
from datetime import datetime
import time

@dataclass
class PerformanceMetrics:
    latency: float
    memory_usage: float
    token_count: int
    timestamp: datetime

class PerformanceMonitor:
    def __init__(self):
        self.metrics_history = []
    
    def record_operation(self, func):
        def wrapper(*args, **kwargs):
            start_time = time.time()
            result = func(*args, **kwargs)
            end_time = time.time()
            
            metrics = PerformanceMetrics(
                latency=end_time - start_time,
                memory_usage=self._get_memory_usage(),
                token_count=self._count_tokens(result),
                timestamp=datetime.now()
            )
            
            self.metrics_history.append(metrics)
            return result
        return wrapper
    
    def get_average_latency(self) -> float:
        if not self.metrics_history:
            return 0.0
        return sum(m.latency for m in self.metrics_history) / len(self.metrics_history)

5.2 自適應最佳化

class AdaptiveOptimizer:
    def __init__(self, performance_monitor: PerformanceMonitor):
        self.monitor = performance_monitor
        self.thresholds = {
            'latency': 1.0,  # 秒
            'memory': 1024,  # MB
            'tokens': 2000   # 令牌數
        }
    
    def optimize(self, component: Component) -> Component:
        metrics = self.monitor.metrics_history[-1]
        
        if metrics.latency > self.thresholds['latency']:
            component = self._optimize_latency(component)
            
        if metrics.memory_usage > self.thresholds['memory']:
            component = self._optimize_memory(component)
            
        if metrics.token_count > self.thresholds['tokens']:
            component = self._optimize_tokens(component)
            
        return component

總結

本文詳細介紹了企業級 Agent 系統的核心元件設計和最佳化策略,包括:

  1. 靈活的 Prompt 模板系統
  2. 高效的分層記憶架構
  3. 可追蹤的推理鏈路
  4. 模組化的元件設計
  5. 完善的效能監控體系

這些元件和最佳實踐為構建可靠、可擴充套件的企業級 Agent 系統提供了堅實的基礎。在實際應用中,可以根據具體需求對這些元件進行定製和擴充套件。

相關文章