研發背景
公司安全部目前針對內部系統的網路訪問日誌的安全審計,大部分都是T+1時效,每日當天,啟動Python編寫的定時任務,完成昨日的日誌審計和檢測,定時任務執行完成後,統一進行企業微信告警推送。這種方案在目前的網路環境和人員規模下,呈現兩個痛點,一是面對日益頻繁的網路攻擊、釣魚連結,T+1的定時任務,難以及時進行告警,因此也難以有效避免如關鍵資訊洩露等問題,二是目前以Python為主的單機定時任務,針對不同場景的處理時效,從一小時到十幾小時不等,效率低下。為解決以上問題,本人協助公司安全部同時對告警採集平臺進行改造,由之前的python單機任務處理,切換到基於Flink叢集的並行處理,且告警推送時效,由之前的T+1天,提升到秒級實時告警。本次改造涉及網路日誌審計的多個常見場景,如埠掃描、黑名單統計、異常流量、連續惡意登入等。本次以一段時間內連續登入失敗20次後,下一次登入成功場景來進行介紹。
場景描述
針對一個內部系統,如郵件系統,公司員工的訪問行為日誌,存放於kafka,我們希望對於一個使用者賬號在同一個IP下,任意的3分鐘時間內,連續登入郵件系統20次失敗,下一次登入成功,這種場景能夠及時獲取並推送到企業微信某個指定的安全介面人。kafka中的資料,能夠透過某個關鍵字,區分當前網路訪問是否一次登入事件,且有訪問時間(也就是事件時間)。在解析到符合需求的使用者賬號之後,第一時間進行企業微信告警推送,並將其這段時間內的訪問行為,寫入下游ElasticSearch。
元件版本
- Flink-1.14.4
- Java8
- ElasticSearch-7.3.2
- Kafka-2.12_2.8.1
日誌結構
IP和賬號皆為測試使用。
{
"user": "wangxm",
"client_ip": "110.68.6.182",
"source": "login",
"loginname": "wangxm@test.com",
"IP": "110.8.148.58",
"timestamp": "17:58:12",
"@timestamp": "2022-04-20T09:58:13.647Z",
"ip": "110.7.231.25",
"clienttype": "POP3",
"result": "success",
"@version": "1"
}
技術方案
上述場景,可考慮使用FlinkCEP及Flink的滑動視窗進行實現。由於本人在採用FlinkCEP的方案進行程式碼編寫除錯後,發現並不能滿足,因此改用滑動視窗進行實現。
關鍵程式碼
主入口類
主入口類,建立了flink環境、設定了基礎引數,建立了kafkaSource,接入訊息後,進行了對映、過濾,並設定了水位線,進行了分組,之後設定了滑動視窗,在視窗內進行了事件統計,將複合條件的事件收集返回並寫入ElasticSearch。
針對map、filter、keyBy、window等運算元,都單獨進行了編寫,後面會一一列出來。
package com.data.dev.flink.mailTopic.main;
import com.data.dev.common.javabean.BaseBean;
import com.data.dev.common.javabean.kafkaMailTopic.MailMsgAlarm;
import com.data.dev.elasticsearch.ElasticSearchInfo;
import com.data.dev.elasticsearch.SinkToEs;
import com.data.dev.flink.FlinkEnv;
import com.data.dev.flink.mailTopic.OperationForLoginFailCheck.*;
import com.data.dev.kafka.KafkaSourceBuilder;
import com.data.dev.key.ConfigurationKey;
import com.data.dev.utils.TimeUtils;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import java.time.Duration;
/**
* Flink處理在3分鐘內連續登入失敗20次後登入成功的場景
* 採用滑動視窗來實現
* @author wangxiaomin 2022-06-01
*/
@Slf4j
public class MailMsg extends BaseBean {
/**
* Flink作業名稱
*/
public static final String JobName = "告警採集平臺——連續登入失敗後登入成功告警";
/**
* Kafka訊息名
*/
public static final String KafkaSourceName = "Kafka Source for AlarmPlatform About Mail Topic";
public MailMsg(){
log.info("初始化滑動視窗場景告警程式");
}
/**
* 執行邏輯統計場景,實現告警推送
*/
public static void execute(){
//① 建立Flink執行環境並設定checkpoint等必要的引數
StreamExecutionEnvironment env = FlinkEnv.getFlinkEnv();
KafkaSource<String> kafkaSource = KafkaSourceBuilder.getKafkaSource(ConfigurationKey.KAFKA_MAIL_TOPIC_NAME,ConfigurationKey.KAFKA_MAIL_CONSUMER_GROUP_ID) ;
DataStreamSource<String> kafkaMailMsg = env.fromSource(kafkaSource, WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofMillis(10)), KafkaSourceName);
//② 篩選登入訊息,建立初始登入事件流
SingleOutputStreamOperator<com.data.dev.common.javabean.kafkaMailTopic.MailMsg> loginMapDs = kafkaMailMsg.map(new MsgToBeanMapper()).name("Map運算元加工");
SingleOutputStreamOperator<com.data.dev.common.javabean.kafkaMailTopic.MailMsg> loginFilterDs = loginMapDs.filter(new MailMsgForLoginFilter()).name("Filter運算元加工");
//③ 設定水位線
WatermarkStrategy<com.data.dev.common.javabean.kafkaMailTopic.MailMsg> watermarkStrategy = WatermarkStrategy.<com.data.dev.common.javabean.kafkaMailTopic.MailMsg>forBoundedOutOfOrderness(Duration.ofMinutes(1))
.withTimestampAssigner((mailMsg, timestamp) -> TimeUtils.switchUTCToBeijingTimestamp(mailMsg.getTimestamp_datetime()));
SingleOutputStreamOperator<com.data.dev.common.javabean.kafkaMailTopic.MailMsg> loginWmDs = loginFilterDs.assignTimestampsAndWatermarks(watermarkStrategy.withIdleness(Duration.ofMinutes(3))).name("增加水位線");
//④ 設定主鍵
KeyedStream<com.data.dev.common.javabean.kafkaMailTopic.MailMsg, String> loginKeyedDs = loginWmDs.keyBy(new LoginKeySelector());
//⑥ 轉化為滑動視窗
WindowedStream<com.data.dev.common.javabean.kafkaMailTopic.MailMsg, String, TimeWindow> loginWindowDs = loginKeyedDs.window(SlidingEventTimeWindows.of(Time.seconds(180L),Time.seconds(90L)));
//⑦ 在視窗內進行邏輯統計
SingleOutputStreamOperator<MailMsgAlarm> loginWindowsDealDs = loginWindowDs.process(new WindowProcessFuncImpl()).name("視窗處理邏輯");
//⑧ 將結果轉化為通用DataStream<String>格式
SingleOutputStreamOperator<String> resultDs = loginWindowsDealDs.map(new AlarmMsgToStringMapper()).name("視窗結果轉化為標準格式");
//⑨ 將最終結果寫入ES
resultDs.addSink(SinkToEs.getEsSinkBuilder(ElasticSearchInfo.ES_LOGIN_FAIL_INDEX_NAME,ElasticSearchInfo.ES_INDEX_TYPE_DEFAULT).build());
//⑩ 提交Flink叢集進行執行
FlinkEnv.envExec(env,JobName);
}
}
mapper運算元
package com.data.dev.flink.mailTopic.OperationForLoginFailCheck;
import com.alibaba.fastjson.JSON;
import com.data.dev.common.javabean.BaseBean;
import com.data.dev.common.javabean.kafkaMailTopic.MailMsgAlarm;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.functions.MapFunction;
/**
* 邏輯統計場景告警推送ES訊息體
* @author wangxiaoming-ghq 2022-06-01
*/
@Slf4j
public class AlarmMsgToStringMapper extends BaseBean implements MapFunction<MailMsgAlarm, String> {
@Override
public String map(MailMsgAlarm mailMsgAlarm) throws Exception {
return JSON.toJSONString(mailMsgAlarm);
}
}
filter運算元
package com.data.dev.flink.mailTopic.OperationForLoginFailCheck;
import com.data.dev.common.javabean.BaseBean;
import com.data.dev.common.javabean.kafkaMailTopic.MailMsg;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.functions.FilterFunction;
/**
* ② 消費mail主題的訊息,過濾其中login的事件
* @author wangxiaoming-ghq 2022-06-01
*/
@Slf4j
public class MailMsgForLoginFilter extends BaseBean implements FilterFunction<MailMsg> {
@Override
public boolean filter(MailMsg mailMsg) {
if("login".equals(mailMsg.getSource())) {
log.info("篩選原始的login事件:【" + mailMsg + "】");
}
return "login".equals(mailMsg.getSource());
}
}
keyBy運算元
package com.data.dev.flink.mailTopic.OperationForLoginFailCheck;
import com.data.dev.common.javabean.BaseBean;
import com.data.dev.common.javabean.kafkaMailTopic.MailMsg;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.java.functions.KeySelector;
/**
* CEP 程式設計,需要進行key選取
*/
@Slf4j
public class LoginKeySelector extends BaseBean implements KeySelector<MailMsg, String> {
@Override
public String getKey(MailMsg mailMsg) {
return mailMsg.getUser() + "@" + mailMsg.getClient_ip();
}
}
視窗函式(核心程式碼)
這裡我們主要考慮使用一個事件列表,用來儲存每一個視窗期內得到的連續登入,當檢測到登陸失敗的事件,即存入事件列表中,之後判斷下一次登入失敗事件,如果檢測到登入成功事件,但此時登入失敗的次數不足20次,則清空loginEventList,等待下一次檢測。一旦符合視窗內連續登入失敗超過20次且下一次登入成功這個事件,則清空此時的loginEventList並將當前登入成功的事件進行告警推送。
package com.data.dev.flink.mailTopic.OperationForLoginFailCheck;
import com.data.dev.common.javabean.kafkaMailTopic.MailMsg;
import com.data.dev.common.javabean.kafkaMailTopic.MailMsgAlarm;
import com.data.dev.utils.HttpUtils;
import com.data.dev.utils.IPUtils;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
/**
* 滑動視窗內複雜事件解析邏輯實現
* @author wangxiaoming-ghq 2022-06-01
*/
@Slf4j
public class WindowProcessFuncImpl extends ProcessWindowFunction<MailMsg, MailMsgAlarm, String, TimeWindow> implements Serializable {
@Override
public void process(String key, ProcessWindowFunction<MailMsg, MailMsgAlarm, String, TimeWindow>.Context context, Iterable<MailMsg> iterable, Collector<MailMsgAlarm> collector) {
List<MailMsg> loginEventList = new ArrayList<>();
MailMsgAlarm mailMsgAlarm;
for (MailMsg mailMsg : iterable) {
log.info("收集到的登入事件【" + mailMsg + "】");
if (mailMsg.getResult().equals("fail")) { //開始檢測當前視窗內的事件,並將失敗的事件收集到loginEventList
log.info("開始檢測當前視窗內的事件,並將失敗的事件收集到loginEventList");
loginEventList.add(mailMsg);
} else if (mailMsg.getResult().equals("success") && loginEventList.size() < 20) {//如果檢測到登入成功事件,但此時登入失敗的次數不足20次,則清空loginEventList,等待下一次檢測
log.info("檢測到登入成功事件,但此時登入失敗的次數為【" + loginEventList.size() + "】不足20次,清空loginEventList,等待下一次檢測");
loginEventList.clear();
} else if (mailMsg.getResult().equals("success") && loginEventList.size() >= 20) {
mailMsgAlarm = getMailMsgAlarm(loginEventList,mailMsg);
log.info("檢測到登入成功的事件,此時視窗內連續登入失敗的次數為【" + mailMsgAlarm.getFailTimes() + "】");
//一旦符合視窗內連續登入失敗超過20次且下一次登入成功這個事件,則清空此時的loginEventList並將當前登入成功的事件進行告警推送;
loginEventList.clear();
doAlarmPush(mailMsgAlarm);
collector.collect(mailMsgAlarm);//將當前登入成功的事件進行收集上報
} else {
log.info(mailMsg.getUser() + "當前已連續:【" + loginEventList.size() + "】 次登入失敗");
}
}
}
/**
* 2022年6月17日15:03:06
* @param eventList:當前視窗內的事件列表
* @param eventCurrent:當前登入成功的事件
* @return mailMsgAlarm:告警訊息體
*/
public static MailMsgAlarm getMailMsgAlarm(List<MailMsg> eventList,MailMsg eventCurrent){
String alarmKey = eventCurrent.getUser() + "@" + eventCurrent.getClient_ip();
String loginFailStartTime = eventList.get(0).getTimestamp_datetime();
String loginSuccessTime = eventCurrent.getTimestamp_datetime();
int loginFailTimes = eventList.size();
MailMsgAlarm mailMsgAlarm = new MailMsgAlarm();
mailMsgAlarm.setMailMsg(eventCurrent);
mailMsgAlarm.setAlarmKey(alarmKey);
mailMsgAlarm.setStartTime(loginFailStartTime);
mailMsgAlarm.setEndTime(loginSuccessTime);
mailMsgAlarm.setFailTimes(loginFailTimes);
return mailMsgAlarm;
}
/**
* 2022年6月17日14:47:53
* @param mailMsgAlarm :當前構建的需要告警的事件
*/
public void doAlarmPush(MailMsgAlarm mailMsgAlarm){
String userKey = mailMsgAlarm.getAlarmKey();
String clientIp = mailMsgAlarm.mailMsg.getClient_ip();
boolean isWhiteListIp = IPUtils.isWhiteListIp(clientIp);
if(isWhiteListIp){//如果是白名單IP,不告警
log.info("當前登入使用者【" + userKey + "】屬於白名單IP");
}else {
//IP歸屬查詢結果、企業微信推送告警
String user = HttpUtils.getUserByClientIp(clientIp);
HttpUtils.pushAlarmMsgToWechatWork(user,mailMsgAlarm.toString());
}
}
}
最後一次map運算元
package com.data.dev.flink.mailTopic.OperationForLoginFailCheck;
import com.alibaba.fastjson.JSON;
import com.data.dev.common.javabean.BaseBean;
import com.data.dev.common.javabean.kafkaMailTopic.MailMsgAlarm;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.functions.MapFunction;
/**
* 邏輯統計場景告警推送ES訊息體
* @author wangxiaoming-ghq 2022-06-01
*/
@Slf4j
public class AlarmMsgToStringMapper extends BaseBean implements MapFunction<MailMsgAlarm, String> {
@Override
public String map(MailMsgAlarm mailMsgAlarm) throws Exception {
return JSON.toJSONString(mailMsgAlarm);
}
}
ElasticSearch工具類
package com.data.dev.elasticsearch;
import com.data.dev.common.javabean.BaseBean;
import com.data.dev.key.ConfigurationKey;
import com.data.dev.key.ElasticSearchKey;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink;
import org.apache.flink.streaming.connectors.elasticsearch7.RestClientFactory;
import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* 2022年6月17日15:15:06
* @author wangxiaoming-ghq
* Flink流計算結果寫入ES公共方法
*/
@Slf4j
public class SinkToEs extends BaseBean {
public static final long serialVersionUID = 2L;
private static final HashMap<String,String> ES_PROPS_MAP = ConfigurationKey.getApplicationProps();
private static final String HOST = ES_PROPS_MAP.get(ConfigurationKey.ES_HOST);
private static final String PASSWORD = ES_PROPS_MAP.get(ConfigurationKey.ES_PASSWORD);
private static final String USERNAME = ES_PROPS_MAP.get(ConfigurationKey.ES_USERNAME);
private static final String PORT = ES_PROPS_MAP.get(ConfigurationKey.ES_PORT);
/**
* 2022年6月17日15:17:55
* 獲取ES連線資訊
* @return esInfoMap:ES連線資訊持久化
*/
public static HashMap<String,String > getElasticSearchInfo(){
log.info("獲取ES連線資訊:【 " + "HOST="+HOST + "PORT="+PORT+"USERNAME="+USERNAME+"PASSWORD=********" + " 】");
HashMap<String,String> esInfoMap = new HashMap<>();
esInfoMap.put(ElasticSearchKey.HOST,HOST);
esInfoMap.put(ElasticSearchKey.PASSWORD,PASSWORD);
esInfoMap.put(ElasticSearchKey.USERNAME,USERNAME);
esInfoMap.put(ElasticSearchKey.PORT,PORT);
return esInfoMap;
}
/**
* @param esIndexName:寫入索引名稱
* @param esType:寫入索引型別
* @return ElasticsearchSink.Builder<String>:構建器
*/
public static ElasticsearchSink.Builder<String> getEsSinkBuilder(String esIndexName,String esType){
HashMap<String, String> esInfoMap = getElasticSearchInfo();
List<HttpHost> httpHosts = new ArrayList<>();
httpHosts.add(new HttpHost(String.valueOf(esInfoMap.get(ElasticSearchKey.HOST)), Integer.parseInt(esInfoMap.get(ElasticSearchKey.PORT)), "http"));
ElasticsearchSink.Builder<String> esSinkBuilder = new ElasticsearchSink.Builder<>(
httpHosts,
new ElasticsearchSinkFunction<String>() {
public IndexRequest createIndexRequest() {
Map<String, String> json = new HashMap<>();
//log.info("寫入ES的data:【"+json+"】");
IndexRequest index = Requests.indexRequest()
.index(esIndexName)
.type(esType)
.source(json);
return index;
}
@Override
public void process(String element, RuntimeContext ctx, RequestIndexer indexer) {
indexer.add(createIndexRequest());
}
}
);
//定義es的連線配置 帶使用者名稱密碼
RestClientFactory restClientFactory = restClientBuilder -> {
CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(
AuthScope.ANY,
new UsernamePasswordCredentials(
String.valueOf(esInfoMap.get(ElasticSearchKey.USERNAME)),
String.valueOf(esInfoMap.get(ElasticSearchKey.PASSWORD))
)
);
restClientBuilder.setHttpClientConfigCallback(httpAsyncClientBuilder -> {
httpAsyncClientBuilder.disableAuthCaching();
return httpAsyncClientBuilder.setDefaultCredentialsProvider(credentialsProvider);
});
};
esSinkBuilder.setRestClientFactory(restClientFactory);
return esSinkBuilder;
}
}
事件實體類
package com.data.dev.common.javabean.kafkaMailTopic;
import com.data.dev.common.javabean.BaseBean;
import lombok.Data;
import java.util.Objects;
/**
* @author wangxiaoming-ghq 2022-05-15
* 邏輯統計場景告警事件
*/
@Data
public class MailMsgAlarm extends BaseBean {
/**
* 當前登入成功的事件
*/
public MailMsg mailMsg;
/**
* 當前捕獲的告警主鍵:username@client_ip
*/
public String alarmKey;
/**
* 第一次登入失敗的事件時間
*/
public String startTime;
/**
* 連續登入失敗後下一次登入成功的事件時間
*/
public String endTime;
/**
* 連續登入失敗的次數
*/
public int failTimes;
@Override
public String toString() {
return "{" +
" 'mailMsg_login_success':'" + mailMsg + "'" +
", 'alarmKey':'" + alarmKey + "'" +
", 'start_login_time_in3min':'" +startTime + "'" +
", 'end_login_time_in3min':'" +endTime + "'" +
", 'login_fail_times':'" +failTimes + "'" +
"}";
}
public MailMsgAlarm() {
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof MailMsgAlarm)) return false;
MailMsgAlarm that = (MailMsgAlarm) o;
return getFailTimes() == that.getFailTimes() && getMailMsg().equals(that.getMailMsg()) && getAlarmKey().equals(that.getAlarmKey()) && getStartTime().equals(that.getStartTime()) && getEndTime().equals(that.getEndTime());
}
@Override
public int hashCode() {
return Objects.hash(getMailMsg(), getAlarmKey(), getStartTime(), getEndTime(), getFailTimes());
}
}
訊息實體類
package com.data.dev.common.javabean.kafkaMailTopic;
import com.data.dev.common.javabean.BaseBean;
import lombok.Data;
import java.util.Objects;
/**
* {
* "user": "wangxm",
* "client_ip": "110.68.6.182",
* "source": "login",
* "loginname": "wangxm@test.com",
* "IP": "110.8.148.58",
* "timestamp": "17:58:12",
* "@timestamp": "2022-04-20T09:58:13.647Z",
* "ip": "110.7.231.25",
* "clienttype": "POP3",
* "result": "success",
* "@version": "1"
* }
*
* user登入使用者
* client_ip 來源ip
* source 型別
* loginname 登入使用者郵箱地址
* ip 目標前端ip
* timestamp 傳送時間
* @timestamp 傳送日期時間
* IP 郵件日誌傳送來源IP
* clienttype 客戶端登入型別
* result 登入狀態
*/
@Data
public class MailMsg extends BaseBean {
public String user;
public String client_ip;
public String source;
public String loginName;
public String mailSenderSourceIp;
public String timestamp_time;
public String timestamp_datetime;
public String ip;
public String clientType;
public String result;
public String version;
public MailMsg() {
}
public MailMsg(String user, String client_ip, String source, String loginName, String mailSenderSourceIp, String timestamp_time, String timestamp_datetime, String ip, String clientType, String result, String version) {
this.user = user;
this.client_ip = client_ip;
this.source = source;
this.loginName = loginName;
this.mailSenderSourceIp = mailSenderSourceIp;
this.timestamp_time = timestamp_time;
this.timestamp_datetime = timestamp_datetime;
this.ip = ip;
this.clientType = clientType;
this.result = result;
this.version = version;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof MailMsg)) return false;
MailMsg mailMsg = (MailMsg) o;
return getUser().equals(mailMsg.getUser()) && getClient_ip().equals(mailMsg.getClient_ip()) && getSource().equals(mailMsg.getSource()) && getLoginName().equals(mailMsg.getLoginName()) && getMailSenderSourceIp().equals(mailMsg.getMailSenderSourceIp()) && getTimestamp_time().equals(mailMsg.getTimestamp_time()) && getTimestamp_datetime().equals(mailMsg.getTimestamp_datetime()) && getIp().equals(mailMsg.getIp()) && getClientType().equals(mailMsg.getClientType()) && getResult().equals(mailMsg.getResult()) && getVersion().equals(mailMsg.getVersion());
}
@Override
public int hashCode() {
return Objects.hash(getUser(), getClient_ip(), getSource(), getLoginName(), getMailSenderSourceIp(), getTimestamp_time(), getTimestamp_datetime(), getIp(), getClientType(), getResult(), getVersion());
}
@Override
public String toString() {
return "{" +
" 'user':'" + user + "'" +
", 'client_ip':'" + client_ip + "'" +
", 'source':'" + source + "'" +
", 'loginName':'" + loginName + "'" +
", 'IP':'" + mailSenderSourceIp + "'" +
", 'timestamp':'" + timestamp_time + "'" +
", '@timestamp':'" + timestamp_datetime + "'" +
", 'ip':'" + "'" +
", 'clientType':'" + clientType + "'" +
", 'result':'" + result + "'" +
", 'version':'" + version + "'" +
"}";
}
}
原始碼已去掉敏感資訊,地址:https://gitee.com/wangxm-2270/alarmCollectByFlink.git