NX11 Training
1-Interface and Sketch | |
NX11 介面佈局
經典下拉式選單
選項卡\組\庫\ 我的選單(功能區)
資源條
滑鼠與鍵盤應用
圖形視窗滑鼠右鍵選單
模型檢視及渲染樣式和佈局
呼叫模板建立新零件
模組簡要
座標系
拉伸、旋轉及沿引導線掃掠
布林運算
部件導航器
表示式
基準特徵 |
NX11 interface layout
Classic drop-down menu
Tab\group\library\Menu
Resource Bar
Mouse and keyboard application
right mouse menu of Graphical window
Model View and render style and layout
Create new part by template
module overview
Coordinate System
Extrude\Revolve\Sweep along guide
Boolean
Part Navigator
Expression
Datum |
草圖概要
草圖建立步驟
草圖首選項
草圖建立
草圖繪製
草圖約束
草圖尺寸
其他工具
草圖繪製思路
練習 |
Sketch Overview
Steps for create Sketch
Preference for Sketch
Create Sketch
Draw Sketch
Constraint Sketch
Dimension Sketch
Other Tools
Method for Create Sketch
EXERCISE |
2-Modeling | |
修剪操作
修剪體
拆分體
延伸片體
分割面
刪除體
設計特徵
孔
凸臺
鍵槽
槽
腔
墊塊
筋
偏置縮放
抽殼
加厚
縮放體
偏置面
4.關聯複製
陣列特徵、陣列面、陣列幾何、映象特徵、映象面、映象幾何
5.邊倒圓
6.面倒圓
7.倒斜角
8.拔模 |
Trim Operation
Trim Body
Split Body
Extend Sheet
Divide Face
Delete Body
Design Feature
Hole
Boss
Slot
Groove
Rib
Offset/Scale
Shell
Thicken
Scale Body
Offset Face
4.Associate Copy
Pattern Feature | Pattern Face | Pattern Geometry | Mirror Feature | Mirror Face | Mirror Geometry
5.Edge Blend
6.Face Blend
7.Chamfer
8.Draft
|
練習講解
縫合
取消縫合
連線面
6.編輯特徵
編輯引數
可回滾編輯
特徵尺寸
編輯位置
特徵重排序
替代特徵
移除引數
實體密度
7.測量
測量長度
測量角度
測量體
8.圖層管理
9.顯示和隱藏
10物件顯示 |
Exercise
Sew
Unsew
Join Face
6.Edit Feature
Edit Parameters
Edit with Rollback
Feature Dimension
Edit Positioning
Reorder Feature
Replace Feature
Remove Parameters
Solid Density
7.Measure
Distance Measure
Angle Measure
Body Measure
8.Layer Manage
9.Show and Hind
10.Object Display |
3-Assembly | |
主模型概念介紹
裝配載入選項
裝配導航器
關聯控制選單
引用集
建立裝配(增加元件、定位)
裝配約束
元件替換
元件陣列
映象
設為唯一
佈置和抑制
佈置和優先定位 |
Master Model Introduction
Load Options
Assembly Navigator
Context Control Menu
Reference Set
Create Assembly(Add Component\Position Operate)
Assembly Constraints
Replace Component
Array
Mirror
Unique
Arrangements and Suppression
Arrangements and Override |
新建元件
新建父元件
WAVE
干涉分析
爆炸
克隆
考試 |
Component Create
new Parent
Wave
Interference Analysis
Exploded
Cloning
Exam |
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69969597/viewspace-2684809/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- Spring Training 5SpringAI
- Machine Learning (5) - Training and Testing DataMacAI
- 【HITCON-Training】Lab 12 - SecretGardenAI
- 2024 Autumn Training #2 CG (by hzy)AI
- DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TRAINING A CLASSIFIERPyTorchAI
- 2018 Multi-University Training Contest 3 - HDU ContestAI
- The 2024 Hunan Multi-School Programming Training Contest, Round 4NaNAI
- 【Android Developers Training】 67. 響應觸控事件AndroidDeveloperAI事件
- Distributed Training: DeepSpeed ZeRO 1/2/3 + Accelerate, Megatron-LMAI
- 論文解讀(ARVGA)《Learning Graph Embedding with Adversarial Training Methods》AI
- 遷移學習(IIMT)——《Improve Unsupervised Domain Adaptation with Mixup Training》遷移學習AIAPT
- 遷移學習(DANN)《Domain-Adversarial Training of Neural Networks》遷移學習AI
- Pure Noise to the Rescue of Insufficient Data: Improving Imbalanced Classification by Training on Random Noise ImagesAIrandom
- 2018 Multi-University Training Contest 9----hdu 6415 Rikka with Nash EquilibriumAIUI
- BUPT 2024 Spring Training #3(ICPC2023 杭州站)Ag覆盤SpringAI
- Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines 論文研讀ASTGoAIMac
- 論文解讀( FGSM)《Adversarial training methods for semi-supervised text classification》AI
- 遷移學習(PAT)《Pairwise Adversarial Training for Unsupervised Class-imbalanced Domain Adaptation》遷移學習AIAPT
- 閱讀筆記:XGPT: Cross-modal Generative Pre-Training for Image Captioning筆記GPTROSAIAPT
- 在 Kubernetes 上彈性深度學習訓練利器 -- Elastic Training Operator深度學習ASTAI
- 論文解讀(GCC)《GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training》GCASTAI
- 論文解讀(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》GNNMITZedAI
- 《CNN Image Retrieval in PyTorch: Training and evaluati-ng CNNs for Image Retrieval in PyTorch》程式碼思路解讀CNNPyTorchAI
- 林軒田機器學習基石課程學習筆記5 — Training versus Testing機器學習筆記AI
- Jigsaw pre-training:擺脫ImageNet,拼圖式主幹網路預訓練方法 | ECCV 2020AI
- 2017中國大學生程式設計競賽 - 女生專場(SDKD 2024 Summer Training Contest K2)程式設計AI
- 機器學習策略篇:詳解如何使用來自不同分佈的資料,進行訓練和測試(Training and testing on different distributions)機器學習AI