原題比賽地址
A. Basic Diplomacy
模擬就好,就先隨便取。然後對於大於 \(\lceil m/2\rceil\) 的那個數直接減到正好滿足為止。
const int N = 1e5 + 5;
int T, n, m, k[N], h[N];
vector <int> f[N], g[N];
signed main(void) {
for (read(T); T; T--) {
read(n), read(m);
for (int i = 1; i <= n; i++) g[i].clear(), h[i] = 0;
int id = 0;
for (int i = 1; i <= m; i++) {
read(k[i]); f[i].clear();
for (int j = 1, x; j <= k[i]; j++) {
read(x); f[i].push_back(x);
}
h[f[i][0]]++; g[f[i][0]].push_back(i); k[i] = f[i][0];
if (h[f[i][0]] > (m + 1) / 2) id = f[i][0];
}
if (!id) {
puts("YES");
for (int i = 1; i <= m; i++) writeln(k[i], i == m ? '\n' : ' ');
continue;
}
int cnt = h[id];
for (int i = 1; i <= m; i++) {
if (f[i].size() == 1) continue;
else if (f[i][0] == id) {
k[i] = f[i][1];
cnt--;
if (cnt <= (m + 1) / 2) break;
}
}
if (cnt > (m + 1) / 2) puts("NO");
else {
puts("YES");
for (int i = 1; i <= m; i++) writeln(k[i], i == m ? '\n' : ' ');
}
}
//fwrite(pf, 1, o1 - pf, stdout);
return 0;
}
B. Playlist
模擬它刪除互質的數的過程,可以用並查集去維護刪除之後連線的過程。所有數壓入佇列中進行有序刪除,可知道複雜度與刪除次數同階。
inline int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
const int N = 1e5 + 5;
int T, n, a[N], f[N];
vector <int> vec; bool del[N];
inline int getf(int u) {
return f[u] == u ? u : f[u] = getf(f[u]);
}
signed main(void) {
for (read(T); T; T--) {
read(n);
queue <int> q;
for (int i = 1; i <= n; i++) {
read(a[i]); f[i] = i; q.push(i);
}
while (!q.empty()) {
int u = q.front(); q.pop();
if (del[u]) continue;
int v = (getf(u) + 1) % n;
if (v == 0) v = n;
if (gcd(a[u], a[v]) == 1) {
q.push(u);
int f1 = getf(u), f2 = getf(v);
f[f1] = f2; del[v] = true;
vec.push_back(v);
}
}
writeln(vec.size(), ' ');
for (auto x : vec) writeln(x, ' '); puts("");
vec.clear();
for (int i = 1; i <= n; i++) a[i] = 0, del[i] = false;
}
//fwrite(pf, 1, o1 - pf, stdout);
return 0;
}
C. Skyline Photo
單調棧處理分界點,然後dp轉移是可以被分界點(區域性最小值)取代或者自己單獨算一張照片,可以用線段樹維護單點修改區間最值。
const int N = 6e5 + 5;
int n, g[N], h[N], b[N];
struct SegmentTree {
ll t[N << 2];
inline void build(int pos, int l, int r) {
t[pos] = -1e18; if (l == r) return;
int mid = l + r >> 1;
build(pos << 1, l, mid);
build(pos << 1 | 1, mid + 1, r);
}
inline void pushup(int pos) { t[pos] = max(t[pos << 1], t[pos << 1 | 1]); }
inline void modify(int pos, int l, int r, int x, ll v) {
if (l == r) return (void)(t[pos] = v);
int mid = l + r >> 1;
if (x <= mid) modify(pos << 1, l, mid, x, v);
else modify(pos << 1 | 1, mid + 1, r, x, v);
pushup(pos);
}
inline ll query(int pos, int l, int r, int L, int R) {
if (L <= l && R >= r) return t[pos];
int mid = l + r >> 1; ll ret = -1e18;
if (L <= mid) ret = query(pos << 1, l, mid, L, R);
if (R > mid) chkmax(ret, query(pos << 1 | 1, mid + 1, r, L, R));
return ret;
}
} T;
stack <pii> q; ll dp[N];
signed main(void) {
read(n);
for (int i = 1; i <= n; i++) read(h[i]);
for (int i = 1; i <= n; i++) read(b[i]);
for (int i = 1; i <= n; i++) {
while (!q.empty() && q.top().first > h[i]) q.pop();
if (!q.empty()) g[i] = q.top().second;
q.push(Mp(h[i], i));
}
T.build(1, 1, n); dp[1] = b[1];
T.modify(1, 1, n, 1, dp[1]);
for (int i = 2; i <= n; i++) {
if (g[i]) dp[i] = max(dp[g[i]], T.query(1, 1, n, g[i], i - 1) + b[i]);
else dp[i] = max((ll) b[i], T.query(1, 1, n, 1, i - 1) + b[i]);
T.modify(1, 1, n, i, dp[i]);
}
writeln(dp[n]);
//fwrite(pf, 1, o1 - pf, stdout);
return 0;
}
D. Useful Edges
普及組floyed題目?我不想多說。
const int N = 605 , M = 2e5 + 5;
int n, m, dis[N][N] , d[N][N], u[M], v[M] , w[M];
signed main(void) {
read(n), read(m); Ms(dis, 0x3f);
for (int i = 1; i <= m; i++) {
read(u[i]), read(v[i]), read(w[i]);
dis[u[i]][v[i]] = dis[v[i]][u[i]] = w[i];
}
for (int i = 1; i <= n; i++) dis[i][i] = 0;
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) chkmin(dis[i][j], dis[i][k] + dis[k][j]);
int q; read(q);
for (int i = 1, u, v, l; i <= q; i++) {
read(u), read(v), read(l);
for (int j = 1; j <= n; j++) chkmax(d[u][j], l - dis[v][j]);
}
int ans = 0;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (dis[j][u[i]] + w[i] <= d[j][v[i]] || dis[j][v[i]] + w[i] <= d[j][u[i]]) { ++ans; break; }
writeln(ans);
return 0;
}