二叉樹的 Morris 中序遍歷——O(1)空間複雜度

sparkyen發表於2024-09-15

回顧

問題陳述: 給定一棵二叉樹,實現中序遍歷並返回包含其中序序列的陣列

例如給定下列二叉樹:
image

我們按照左、根、右的順序遞迴遍歷二叉樹,得到以下遍歷:
image

最終中序遍歷結果可以輸出為: [3, 1, 9, 2, 4, 7, 5, 8, 6]

Morris trick

Morris 中序遍歷是一種樹遍歷演算法,旨在實現 O(1) 的空間複雜度,無需遞迴或外部資料結構。該演算法應高效地按中序順序訪問二叉樹中的每個節點,並在遍歷過程中列印或處理節點值,而無需使用堆疊或遞迴。

點選檢視程式碼
                            
#include <iostream>
#include <sstream>
#include <unordered_map>
#include <vector>
#include <queue>
#include <map>

using namespace std;

// TreeNode structure
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

class Solution {
public:
    // Function to perform iterative Morris
    // inorder traversal of a binary tree
    vector<int> getInorder(TreeNode* root) {
        // Vector to store the
        // inorder traversal result
        vector<int> inorder;
        // Pointer to the current node,
        // starting from the root
        TreeNode* cur = root;
        
        // Loop until the current
        // node is not NULL
        while (cur != NULL) {
            // If the current node's
            // left child is NULL
            if (cur->left == NULL) {
                // Add the value of the current
                // node to the inorder vector
                inorder.push_back(cur->val);
                // Move to the right child
                cur = cur->right;
            } else {
                // If the left child is not NULL,
                // find the predecessor (rightmost node
                // in the left subtree)
                TreeNode* prev = cur->left;
                while (prev->right && prev->right != cur) {
                    prev = prev->right;
                }
                
                // If the predecessor's right child
                // is NULL, establish a temporary link
                // and move to the left child
                if (prev->right == NULL) {
                    prev->right = cur;
                    cur = cur->left;
                } else {
                    // If the predecessor's right child
                    // is already linked, remove the link,
                    // add current node to inorder vector,
                    // and move to the right child
                    prev->right = NULL;
                    inorder.push_back(cur->val);
                    cur = cur->right;
                }
            }
        }
        
        // Return the inorder
        // traversal result
        return inorder;
    }
};


int main() {

    TreeNode* root = new TreeNode(1);
    root->left = new TreeNode(2);
    root->right = new TreeNode(3);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(5);
    root->left->right->right = new TreeNode(6);

    Solution sol;
    
    vector<int> inorder = sol.getInorder(root);

    cout << "Binary Tree Morris Inorder Traversal: ";
    for(int i = 0; i< inorder.size(); i++){
        cout << inorder[i] << " ";
    }
    cout << endl;

    return 0;
}

相關文章