讓我們來看一個經典的神經網路。這是一個包含三個層次的神經網路。紅色的是輸入層,綠色的是輸出層,紫色的是中間層(也叫隱藏層)。輸入層有3個輸入單元,隱藏層有4個單元,輸出層有2個單元。後文中,我們統一使用這種顏色來表達神經網路的結構。
在開始介紹前,有一些知識可以先記在心裡:
- 設計一個神經網路時,輸入層與輸出層的節點數往往是固定的,中間層則可以自由指定;
- 神經網路結構圖中的拓撲與箭頭代表著預測過程時資料的流向,跟訓練時的資料流有一定的區別;
- 結構圖裡的關鍵不是圓圈(代表“神經元”),而是連線線(代表“神經元”之間的連線)。每個連線線對應一個不同的權重(其值稱為權值),這是需要訓練得到的。
除了從左到右的形式表達的結構圖,還有一種常見的表達形式是從下到上來表示一個神經網路。這時候,輸入層在圖的最下方。輸出層則在圖的最上方,如下圖:
從左到右的表達形式以Andrew Ng和LeCun的文獻使用較多,Caffe裡使用的則是從下到上的表達。在本文中使用Andrew Ng代表的從左到右的表達形式。