[原始碼解析] TensorFlow 分散式環境(5) --- Session
會話機制是TensorFlow 分散式執行時的核心,我們接下來按照從 Client 到 worker 的流程,把 Session 機制從前到後走一邊。
本系列其他文章是:
[翻譯] TensorFlow 分散式之論文篇 "Implementation of Control Flow in TensorFlow"
[原始碼解析] TensorFlow 分散式環境(1) --- 總體架構
[原始碼解析] TensorFlow 分散式環境(2)---Master 靜態邏輯
[原始碼解析] TensorFlow 分散式環境(3)--- Worker 靜態邏輯
[原始碼解析] TensorFlow 分散式環境(4) --- WorkerCache
1. 概述
1.1 Session 分類
分散式模式由如下 sessions 彼此協作完成了會話控制,其中:
- GrpcSession 位於 Client 之上,控制 Client 的會話生命週期;
- MasterSession 位於 Master 之上,可能存在多個 Client 同時接入到同一個 Master,Master 會為每個 Client 構建一個 MasterSession。MasterSession 控制 Master 的會話生命周 期;
- WorkerSession 位於 Worker 之上,可能存在多個 Master 接入到同一個 Worker,Worker 會為每個 Master 建立一個 WorkerSession。WorkerSession 控制 Worker 的會話生命週期;
如下圖所示,這裡 Master 和 Worker 都是一個 Server,每個 Server 之上執行一個 MasterService,一個 WorkerService,每個 Server 可能會扮演不同角色,具體取決於使用者如何配置計算圖和叢集。因為存在這種兩層一對多關係,為了區別這種不同的資料流和控制關係,有邏輯關係的這三個 session 繫結在同一個 session_handle 之上,每個 session_handle 標示一條完整的資料流。
圖 1 Session 關係
1.2 會話流程
我們從 GrpcSession 入手,其基本功能如下:
- 建立會話
- 獲取遠端裝置集;
- 在 Master 之上建立 MasterSession;
- 在各個 Worker 之上建立 WorkerSession;
- 迭代執行
- 啟動執行;
- 圖分裂;
- 註冊子圖;
- 執行子圖;
- 關閉會話
- 關閉 MasterSession
- 關閉 WorkerSession;
1.2.1 MasterSession 生命週期
在分散式模式下,Master 執行時被 MasterSession 控制,其生命週期如下圖所示。
圖 2 MasterSession 生命週期
1.2.2 WorkerSession 生命週期
在分散式模式下,Worker 執行時由 WorkerSession 控制,其生命週期如下圖所示。
圖 3 WorkerSession 生命週期
2. GrpcSession
GrpcSession 是 tensorflow::grpc::MasterService 的簡單封裝。其使用遠端裝置集作為計算資源,使用 grpc 作為遠端呼叫機制,讓呼叫者在遠端裝置上對 TensorFlow 圖進行計算。
2.1 定義
我們依然只給出成員變數定義和部分重要函式,其就是利用 master_ 對 tensorflow::grpc::MasterService 進行呼叫。
class GrpcSession : public Session {
// 有多種建立方式
Status Create(const GraphDef& graph) override;
Status Create(const RunOptions& run_options, const GraphDef& graph) override;
Status Create(GraphDef&& graph) override;
Status Create(const RunOptions& run_options, GraphDef&& graph) override;
private:
const SessionOptions options_;
std::unique_ptr<MasterInterface> master_;
mutex mu_;
// handle_ returned by the master to identify this session.
string handle_ TF_GUARDED_BY(mu_);
// The current version of the graph.
int64_t current_graph_version_ TF_GUARDED_BY(mu_);
bool is_local_ = false;
};
2.2 註冊&工廠類
GrpcSession 的使用是通過工廠類完成,比如:
Status NewSession(const SessionOptions& options, Session** out_session) {
SessionFactory* factory;
Status s = SessionFactory::GetFactory(options, &factory);
if (!s.ok()) {
*out_session = nullptr;
return s;
}
// Starts exporting metrics through a platform-specific monitoring API (if
// provided). For builds using "tensorflow/core/platform/default", this is
// currently a no-op.
session_created->GetCell()->Set(true);
s = factory->NewSession(options, out_session);
if (!s.ok()) {
*out_session = nullptr;
}
return s;
}
GrpcSession 由 GrpcSessionFactory 來多型建立,如果 protocal 使用了"grpc://",就會產生 GrpcSession。而 GrpcSessionFactory 會實現註冊到系統之上。
const char* const kSchemePrefix = "grpc://";
const size_t kSchemePrefixLength = strlen(kSchemePrefix);
class GrpcSessionFactory : public SessionFactory {
public:
bool AcceptsOptions(const SessionOptions& options) override {
return absl::StartsWith(options.target, kSchemePrefix);
}
Status NewSession(const SessionOptions& options,
Session** out_session) override {
std::unique_ptr<GrpcSession> session;
TF_RETURN_IF_ERROR(GrpcSession::Create(options, &session));
*out_session = session.release();
return Status::OK();
}
// Invokes the session specific static method to reset containers.
Status Reset(const SessionOptions& options,
const std::vector<string>& containers) override {
return GrpcSession::Reset(options, containers);
}
};
class GrpcSessionRegistrar {
public:
GrpcSessionRegistrar() {
SessionFactory::Register("GRPC_SESSION", new GrpcSessionFactory());
}
};
static GrpcSessionRegistrar registrar;
2.3 建立GrpcSession
GrpcSession::Create 方法完成了獲取工作。Client 通過 GrpcSession 呼叫 Master Service,但是具體如何與 Master Service 互動?則通過 MasterInterface。
所以說,這裡最重要的就是如何構建 MasterInterface 例項。我們前文提到過,MasterInterface有兩種實現,都是用來和 Master service 進行通訊,分別對應了不同的應用場景。
- LocalMaster 用於程式間的直接通訊,此時 Client 和 Master 在同一個程式。
- GrpcRemoteMaster 則使用 Grpc 來和 Master service 進行通訊,此時Client 和 Master 分別部署在兩個不同程式。GrpcRemoteMaster 其實就實現了 gRPC 客戶端,它通過 Stub 訪問遠端 Master 上的 MasterService 服務。
圖上兩個矩形封裝的 Master 代表實際的 Master 類,此類實現了具體 Master 功能。
圖 1 Master 邏輯關係
從下面程式碼可以看到,GrpcSession 會依據 options.target 來決定如何建立,options.target 一般就是"grpc://",如果通過 LocalMaster::Lookup 方法得到 LocalMaster 類,就直接使用,如果沒有找到,就使用 NewGrpcMaster 來生成一個 GrpcRemoteMaster。
/* static */
Status GrpcSession::Create(const SessionOptions& options,
std::unique_ptr<GrpcSession>* out_session) {
std::unique_ptr<GrpcSession> session(new GrpcSession(options));
std::unique_ptr<MasterInterface> master;
// For testing, we enable the client to disable the use of the local
// master registry, so that the RPC stack is exercised.
if (!options.config.rpc_options().use_rpc_for_inprocess_master()) {
master = LocalMaster::Lookup(options.target);
}
if (!master) {
SharedGrpcChannelPtr master_channel;
TF_RETURN_IF_ERROR(
NewHostPortGrpcChannel(options.target.substr(kSchemePrefixLength),
&options.config.rpc_options(), &master_channel));
master.reset(NewGrpcMaster(master_channel));
} else {
session->is_local_ = true;
}
session->SetRemoteMaster(std::move(master));
*out_session = std::move(session);
return Status::OK();
}
2.4 建立MasterSession
在 GrpcSession 建立之後,系統會接著建立 MasterSession,這是通過 GrpcSession::Create(graph_def) 完成的。GrpcSession::Create(graph_def) 會構建 CreateSessionRequst 訊息,然後通過 GrpcRemoteMaster 把初始計算圖發給 Master。Master 收到 CreateSessionRequst 訊息之後就構建相應的 MasterSession,然後返回 CreateSessionResponse 給 GrpcSession,訊息包括。
- 該 MasterSession 的 session_handle。用於標識 Master 側的 MasterSession 例項
- 初始計算圖的版本號 graph_version。用於後續發起 ExtendSession 操作,比如往原始的計算圖中追加新的節點。
圖 2 建立MasterSession
具體程式碼如下,首先是兩個 create 方法,其最終呼叫到 CreateImpl。
Status GrpcSession::Create(const RunOptions& run_options,
const GraphDef& graph) {
return Create(run_options, GraphDef(graph));
}
Status GrpcSession::Create(GraphDef&& graph) {
CallOptions call_options;
call_options.SetTimeout(options_.config.operation_timeout_in_ms());
return CreateImpl(&call_options, std::move(graph));
}
CreateImpl 方法如下:
Status GrpcSession::CreateImpl(CallOptions* call_options, GraphDef graph) {
{
mutex_lock l(mu_);
if (!handle_.empty()) {
return errors::InvalidArgument("A session is alive.");
}
}
CreateSessionRequest req;
*req.mutable_config() = options_.config;
req.mutable_graph_def()->Swap(&graph);
req.set_target(options_.target);
ReEncodeConsts(req.mutable_graph_def());
CreateSessionResponse resp;
Status s = master_->CreateSession(call_options, &req, &resp);
if (s.ok()) {
SetHandleAndGraphVersion(resp.session_handle(), resp.graph_version());
}
return s;
}
2.4.1 GrpcRemoteMaster::CreateSession
GrpcRemoteMaster 是位於 Client 的 gRPC 客戶端實現,它的 CreateSession 方法只是通過 gRPC stub 來呼叫 遠端服務 MasterService 的 CreateSession 介面,其實就是傳送一個 CreateSessionRequest 請求。
Status CreateSession(CallOptions* call_options,
const CreateSessionRequest* request,
CreateSessionResponse* response) override {
return CallWithRetry(call_options, request, response,
&MasterServiceStub::CreateSession);
}
2.4.2 GrpcMasterService::CreateSessionHandler
GrpcMasterService 是 Master 提供的 gRPC 服務,收到 CreateSessionRequest 訊息之後, 服務呼叫 GrpcMasterService::CreateSessionHandler 來處理訊息,而真正業務處理是由 master_impl_(Master 類的例項)來完成,就是呼叫了 Master::CreateSession。
當 master_impl_ 處理完成後,會向 Client 返回 CreateSessionResponse 響應。
// RPC handler for creating a session.
void CreateSessionHandler(
MasterCall<CreateSessionRequest, CreateSessionResponse>* call) {
CreateSessionRequest* rewritten_req = new CreateSessionRequest;
rewritten_req->mutable_config()->MergeFrom(default_session_config_);
rewritten_req->MergeFrom(call->request);
master_impl_->CreateSession(rewritten_req, &call->response,
[call, rewritten_req](const Status& status) {
call->SendResponse(ToGrpcStatus(status));
delete rewritten_req;
});
ENQUEUE_REQUEST(CreateSession, true);
}
2.4.3 Master::CreateSession
Master::CreateSession 會從執行緒池之中拿到一個執行緒,線上程之中會做如下處理:
- 如果定義了 clust_spec,則按照配置尋找所有的 worker。
- 獲取遠端裝置。
- 獲取遠端worker。
- 通過factory 建立 MasterSession。
- 利用 worker_cache_factory,讓 MasterSession 建立 WorkerSession 會話。
- 通過 sessions_.insert 在 Master 內部的 <session_handle, MasterSession> 二元組之中儲存對應關係,這樣後續 Master 就可以通過 session_handle 得到對應的 MasterSession。
void Master::CreateSession(const CreateSessionRequest* req,
CreateSessionResponse* resp, MyClosure done) {
SchedClosure([this, req, resp, done]() {
Status status;
WorkerCacheFactoryOptions worker_cache_factory_options;
string grpc_protocol("grpc");
worker_cache_factory_options.protocol = &grpc_protocol;
auto call_done = gtl::MakeCleanup([&status, &done] { done(status); });
status = ValidateExternalGraphDefSyntax(req->graph_def());
if (!status.ok()) return;
// The following 4 variables are set differently, depending on whether this
// session uses a client-provided clusterspec or not.
WorkerCacheInterface* worker_cache = nullptr;
// Note: worker_cache_ptr will be null except if this session is using a
// client-supplied ClusterDef (ClusterSpec propagation).
std::unique_ptr<WorkerCacheInterface> worker_cache_ptr;
std::unique_ptr<DeviceSet> device_set;
// TODO(saeta): Convert to std::make_unique when available.
std::unique_ptr<std::vector<std::unique_ptr<Device>>> remote_devices(
new std::vector<std::unique_ptr<Device>>());
if (req->config().has_cluster_def()) { // 如果定義了叢集
worker_cache_factory_options.cluster_def = &req->config().cluster_def();
// Set the server_def's job_name and task_index fields.
string normalized_string;
string grpc_protocol(kGrpcProtocol);
if (req->target().compare(0, grpc_protocol.length(), grpc_protocol) ==
0) {
normalized_string =
req->target().substr(grpc_protocol.length(), string::npos);
} else {
normalized_string = req->target();
}
for (auto&& job : req->config().cluster_def().job()) {
for (auto&& task : job.tasks()) {
if (task.second == normalized_string) {
if (worker_cache_factory_options.job_name != nullptr) {
return;
}
if (env_->local_devices[0]->parsed_name().job == job.name() &&
env_->local_devices[0]->parsed_name().task == task.first) {
return;
}
worker_cache_factory_options.job_name = &job.name();
worker_cache_factory_options.task_index = task.first;
}
}
}
worker_cache_factory_options.rpc_options = &req->config().rpc_options();
// Create the worker cache from the computed server_def.
status = env_->worker_cache_factory(worker_cache_factory_options,
&worker_cache);
if (!status.ok()) return;
worker_cache_ptr = std::unique_ptr<WorkerCacheInterface>(worker_cache);
// Ping all the workers and build the list of devices that the
// session will use.
// 獲取裝置
status =
DeviceFinder::GetRemoteDevices(req->config().device_filters(), env_,
worker_cache, remote_devices.get());
if (!status.ok()) return;
device_set.reset(new DeviceSet);
for (auto&& d : *remote_devices) {
device_set->AddDevice(d.get());
DeviceNameUtils::ParsedName name = d->parsed_name();
if (name.job == *worker_cache_factory_options.job_name &&
name.task == worker_cache_factory_options.task_index &&
name.type == "CPU" && name.id == 0) {
device_set->set_client_device(d.get());
}
}
} else { // 沒有叢集
worker_cache = env_->worker_cache;
// Ping all the workers and build the list of devices that the
// session will use.
// 獲取遠端裝置
status =
DeviceFinder::GetRemoteDevices(req->config().device_filters(), env_,
worker_cache, remote_devices.get());
if (!status.ok()) return;
device_set.reset(new DeviceSet);
for (auto&& d : *remote_devices) {
device_set->AddDevice(d.get());
}
int num_local_devices = 0;
for (Device* d : env_->local_devices) {
device_set->AddDevice(d);
if (num_local_devices == 0) {
// Uses the first local device as the client device.
device_set->set_client_device(d);
}
num_local_devices++;
}
}
SessionOptions options;
options.config = req->config();
// 獲取遠端worker
std::vector<string> filtered_worker_list;
DeviceFinder::GetRemoteWorkers(req->config().device_filters(), env_,
worker_cache, &filtered_worker_list);
// 通過factory找到會話
MasterSession* session = env_->master_session_factory(
options, env_, std::move(remote_devices), std::move(worker_cache_ptr),
std::move(device_set), std::move(filtered_worker_list));
GraphDef* gdef =
const_cast<CreateSessionRequest*>(req)->mutable_graph_def();
// 建立會話,把圖傳給會話
status = session->Create(std::move(*gdef), worker_cache_factory_options);
if (!status.ok()) {
session->Close().IgnoreError();
session->Unref();
return;
}
resp->set_session_handle(session->handle());
// Insert into the session map, which takes ownership of the session.
{
mutex_lock l(mu_);
CHECK(sessions_.insert({session->handle(), session}).second);
}
});
}
3. MasterSession
MasterSession 位於 Master 之上,可能存在多個 Client 同時接入到同一個 Master,Master 會為每個 Client 構建一個 MasterSession。MasterSession 控制 Master 的會話生命周 期。
3.1 定義
MasterSession 的定義如下。
// MasterSession wraps ClientGraph in a reference counted object.
// This way, MasterSession can clear up the cache mapping Run requests to
// compiled graphs while the compiled graph is still being used.
class MasterSession::ReffedClientGraph : public core::RefCounted {
public:
ReffedClientGraph(const string& handle, const BuildGraphOptions& bopts,
std::unique_ptr<ClientGraph> client_graph,
const SessionOptions& session_opts,
const StatsPublisherFactory& stats_publisher_factory,
bool is_partial, WorkerCacheInterface* worker_cache,
bool should_deregister)
: session_handle_(handle),
bg_opts_(bopts),
client_graph_before_register_(std::move(client_graph)),
session_opts_(session_opts),
is_partial_(is_partial),
callable_opts_(bopts.callable_options),
worker_cache_(worker_cache),
should_deregister_(should_deregister),
collective_graph_key_(
client_graph_before_register_->collective_graph_key) {
VLOG(1) << "Created ReffedClientGraph for node with "
<< client_graph_before_register_->graph.num_node_ids();
stats_publisher_ = stats_publisher_factory(handle, bopts, session_opts);
// Initialize a name to node map for processing device stats.
for (Node* n : client_graph_before_register_->graph.nodes()) {
name_to_node_details_.emplace(
n->name(),
NodeDetails(n->type_string(),
strings::StrCat(
"(", absl::StrJoin(n->requested_inputs(), ", "))));
}
}
~ReffedClientGraph() override {
if (should_deregister_) {
DeregisterPartitions();
} else {
for (Part& part : partitions_) {
worker_cache_->ReleaseWorker(part.name, part.worker);
}
}
}
private:
const string session_handle_;
const BuildGraphOptions bg_opts_;
// NOTE(mrry): This pointer will be null after `RegisterPartitions()` returns.
std::unique_ptr<ClientGraph> client_graph_before_register_ TF_GUARDED_BY(mu_);
const SessionOptions session_opts_;
const bool is_partial_;
const CallableOptions callable_opts_;
WorkerCacheInterface* const worker_cache_; // Not owned.
struct NodeDetails {
explicit NodeDetails(string type_string, string detail_text)
: type_string(std::move(type_string)),
detail_text(std::move(detail_text)) {}
const string type_string;
const string detail_text;
};
std::unordered_map<string, NodeDetails> name_to_node_details_;
const bool should_deregister_;
const int64_t collective_graph_key_;
std::atomic<int64_t> execution_count_ = {0};
// Graph partitioned into per-location subgraphs.
struct Part {
// Worker name.
string name;
// Maps feed names to rendezvous keys. Empty most of the time.
std::unordered_map<string, string> feed_key;
// Maps rendezvous keys to fetch names. Empty most of the time.
std::unordered_map<string, string> key_fetch;
// The interface to the worker. Owned.
WorkerInterface* worker = nullptr;
// After registration with the worker, graph_handle identifies
// this partition on the worker.
string graph_handle;
Part() : feed_key(3), key_fetch(3) {}
};
// partitions_ is immutable after RegisterPartitions() call
// finishes. RunPartitions() can access partitions_ safely without
// acquiring locks.
std::vector<Part> partitions_;
mutable mutex mu_;
// Partition initialization and registration only needs to happen
// once. `!client_graph_before_register_ && !init_done_.HasBeenNotified()`
// indicates the initialization is ongoing.
Notification init_done_;
// init_result_ remembers the initialization error if any.
Status init_result_ TF_GUARDED_BY(mu_);
std::unique_ptr<StatsPublisherInterface> stats_publisher_;
};
3.2 建立
MasterSession::Create(graph_def) 的工作如下:
- 呼叫 MakeForBaseGraph 來初始化計算圖,並生成 SimpleGraphExecutionState 例項;
- 呼叫 CreateWorkerSessions,如果動態配置叢集,則廣播通知給所有 Worker,讓其建立對應的 WorkerSession。
Status MasterSession::Create(GraphDef&& graph_def,
const WorkerCacheFactoryOptions& options) {
if (session_opts_.config.use_per_session_threads() ||
session_opts_.config.session_inter_op_thread_pool_size() > 0) {
return errors::InvalidArgument(
"Distributed session does not support session thread pool options.");
}
if (session_opts_.config.graph_options().place_pruned_graph()) {
session_opts_.config.mutable_graph_options()->set_place_pruned_graph(false);
}
GraphExecutionStateOptions execution_options;
execution_options.device_set = devices_.get();
execution_options.session_options = &session_opts_;
{
mutex_lock l(mu_);
TF_RETURN_IF_ERROR(GraphExecutionState::MakeForBaseGraph(
std::move(graph_def), execution_options, &execution_state_));
}
should_delete_worker_sessions_ = true;
return CreateWorkerSessions(options);
}
3.2.1 建立計算圖
這裡會構建 GraphExecutionState,依據 GraphDef 構建對應的 FullGraph。
GraphDef 是原始圖結構,ConvertGraphDefToGraph 完成從 GraphDef 到 Graph 的格式轉換,GraphDef 包含了圖的後設資料,Graph 則包含圖結構的其他資訊,被執行時系統所使用。
/* static */ Status GraphExecutionState::MakeForBaseGraph(
GraphDef&& graph_def, const GraphExecutionStateOptions& options,
std::unique_ptr<GraphExecutionState>* out_state) {
auto flib_def = absl::make_unique<FunctionLibraryDefinition>(
OpRegistry::Global(), graph_def.library());
TF_RETURN_IF_ERROR(AddDefaultAttrsToGraphDef(&graph_def, *flib_def, 0));
if (options.session_options->config.graph_options().place_pruned_graph() ||
!options.session_options->config.experimental()
.optimize_for_static_graph()) {
auto ret = absl::WrapUnique(new GraphExecutionState(
absl::make_unique<GraphDef>(std::move(graph_def)), std::move(flib_def),
options));
// When place_pruned_graph is true, a different Graph* will be initialized
// each time we prune the original graph, so there is no need to
// construct a Graph* in this case.
if (!options.session_options->config.graph_options().place_pruned_graph()) {
auto base_graph = absl::make_unique<Graph>(OpRegistry::Global());
TF_RETURN_IF_ERROR(ConvertGraphDefToGraph({}, *ret->original_graph_def_,
base_graph.get()));
TF_RETURN_IF_ERROR(ret->InitBaseGraph(std::move(base_graph)));
}
*out_state = std::move(ret);
} else {
auto ret = absl::WrapUnique(
new GraphExecutionState(nullptr, std::move(flib_def), options));
auto base_graph = absl::make_unique<Graph>(OpRegistry::Global());
TF_RETURN_IF_ERROR(
ConvertGraphDefToGraph({}, std::move(graph_def), base_graph.get()));
TF_RETURN_IF_ERROR(ret->InitBaseGraph(std::move(base_graph)));
*out_state = std::move(ret);
}
return Status::OK();
}
InitBaseGraph 會呼叫 Placer.run 完成運算元編排。就是把計算圖之中的運算元放到最適合的裝置上計算,這樣可以最大化效率。Placer 會對 Graph 做分析,並且結合使用者的要求對每個Node如何放置進行微調,具體原則有如下四種:
- 儘量滿足使用者的要求。使用者可以通過 device 資訊或者 loc 來制定裝置,儘量優先滿足。
- 儘量使用快速裝置。TF 系統之中每個裝置都有優先順序,級別越高計算效能越好,優先選擇級別高的裝置。
- 儘量保證程式可執行。如果某個 Node 指定了在某種裝置上執行,但是系統之中沒有,則會選擇一個可用的裝置來重寫 Placement。
- 儘量考慮近鄰性。比如儘量讓 Consumer 和 Producer 在同一個裝置上,避免無意義的跨裝置拷貝。
Status GraphExecutionState::InitBaseGraph(std::unique_ptr<Graph>&& new_graph) {
// Save stateful placements before placing.
RestoreStatefulNodes(new_graph.get());
GraphOptimizationPassOptions optimization_options;
optimization_options.session_handle = session_handle_;
optimization_options.session_options = session_options_;
optimization_options.graph = &new_graph;
optimization_options.flib_def = flib_def_.get();
optimization_options.device_set = device_set_;
TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping(
OptimizationPassRegistry::PRE_PLACEMENT, optimization_options));
Placer placer(new_graph.get(), "", flib_def_.get(), device_set_,
/* default_local_device= */ nullptr,
session_options_ == nullptr ||
session_options_->config.allow_soft_placement(),
session_options_ != nullptr &&
session_options_->config.log_device_placement());
TF_RETURN_IF_ERROR(placer.Run());
TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping(
OptimizationPassRegistry::POST_PLACEMENT, optimization_options));
for (const Node* n : new_graph->nodes()) {
node_name_to_cost_id_map_[n->name()] = n->cost_id();
}
SaveStatefulNodes(new_graph.get());
graph_ = new_graph.release();
return Status::OK();
}
3.2.2 建立 WorkerSession
當 MasterSession 建立成功後,如果沒有動態配置叢集 (預設的分散式配置環境), 則不會廣播所有 Worker 動態地建立 WorkerSession。事實上,每個 Worker 都存在一個 SessionMgr 例項,它持有一個名為 legacy_session_ 的 WorkerSession 例項。因此,每個 Worker 存在一個全域性唯一的 WorkerSession 例項。
圖 3 建立 WorkerSession
邏輯如下:
- 首先,呼叫 ReleaseWorker 來釋放已有的 workers。
- 其次,呼叫 GetOrCreateWorker 重新在快取之中獲取 Worker,如果沒有,快取自會構建。
- 最後,遍歷 Workers,呼叫 CreateWorkerSessionAsync 來讓每個 Worker 各自建立一個 WorkerSession,每個請求都會用 set_session_handle(handle_) 來把 MasterSession 的 session_handle 設定進入,這樣每個 WorkerSession 都和 MasterSession 共享同樣的 session_handle,它們都隸屬於同一個 MasterSession。
為了收集全部 Workers 返回的訊息,這裡使用了計數器 BlockingCounter 來等待,其會把初始數值設定為 Worker 數目,當收集全部 Workers 的 CreateWorkerSessionResponse 響應訊息之後,計數器會減少為 0,則 BlockingCounter 會被喚醒。
Status MasterSession::CreateWorkerSessions(
const WorkerCacheFactoryOptions& options) {
const std::vector<string> worker_names = filtered_worker_list_;
WorkerCacheInterface* worker_cache = get_worker_cache();
struct WorkerGroup {
// The worker name. (Not owned.)
const string* name;
// The worker referenced by name. (Not owned.)
WorkerInterface* worker = nullptr;
// Request and responses used for a given worker.
CreateWorkerSessionRequest request;
CreateWorkerSessionResponse response;
Status status = Status::OK();
};
BlockingCounter done(worker_names.size());
std::vector<WorkerGroup> workers(worker_names.size());
// Release the workers.
auto cleanup = gtl::MakeCleanup([&workers, worker_cache] {
for (auto&& worker_group : workers) {
if (worker_group.worker != nullptr) {
worker_cache->ReleaseWorker(*worker_group.name, worker_group.worker);
}
}
});
string task_name;
string local_device_name;
DeviceNameUtils::SplitDeviceName(devices_->client_device()->name(),
&task_name, &local_device_name);
const int64_t client_device_incarnation =
devices_->client_device()->attributes().incarnation();
Status status = Status::OK();
// Create all the workers & kick off the computations.
for (size_t i = 0; i < worker_names.size(); ++i) {
workers[i].name = &worker_names[i];
workers[i].worker = worker_cache->GetOrCreateWorker(worker_names[i]);
workers[i].request.set_session_handle(handle_);
workers[i].request.set_master_task(task_name);
workers[i].request.set_master_incarnation(client_device_incarnation);
if (session_opts_.config.share_cluster_devices_in_session() ||
session_opts_.config.experimental()
.share_cluster_devices_in_session()) {
for (const auto& remote_dev : devices_->devices()) {
*workers[i].request.add_cluster_device_attributes() =
remote_dev->attributes();
}
if (!session_opts_.config.share_cluster_devices_in_session() &&
session_opts_.config.experimental()
.share_cluster_devices_in_session()) {
}
}
DeviceNameUtils::ParsedName name;
if (!DeviceNameUtils::ParseFullName(worker_names[i], &name)) {
status = errors::Internal("Could not parse name ", worker_names[i]);
return status;
}
if (!name.has_job || !name.has_task) {
status = errors::Internal("Incomplete worker name ", worker_names[i]);
return status;
}
if (options.cluster_def) {
*workers[i].request.mutable_server_def()->mutable_cluster() =
*options.cluster_def;
workers[i].request.mutable_server_def()->set_protocol(*options.protocol);
workers[i].request.mutable_server_def()->set_job_name(name.job);
workers[i].request.mutable_server_def()->set_task_index(name.task);
// Session state is always isolated when ClusterSpec propagation
// is in use.
workers[i].request.set_isolate_session_state(true);
} else {
// NOTE(mrry): Do not set any component of the ServerDef,
// because the worker will use its local configuration.
workers[i].request.set_isolate_session_state(
session_opts_.config.isolate_session_state());
}
if (session_opts_.config.experimental()
.share_session_state_in_clusterspec_propagation()) {
// In a dynamic cluster, the ClusterSpec info is usually propagated by
// master sessions. However, in data parallel training with multiple
// masters
// ("between-graph replication"), we need to disable isolation for
// different worker sessions to update the same variables in PS tasks.
workers[i].request.set_isolate_session_state(false);
}
}
for (size_t i = 0; i < worker_names.size(); ++i) {
auto cb = [i, &workers, &done](const Status& s) {
workers[i].status = s;
done.DecrementCount();
};
workers[i].worker->CreateWorkerSessionAsync(&workers[i].request,
&workers[i].response, cb);
}
done.Wait();
for (size_t i = 0; i < workers.size(); ++i) {
status.Update(workers[i].status);
}
return status;
}
GrpcRemoteWorker
GrpcRemoteWorker 是 gRPC 的客戶端,通過 stub 呼叫遠端 WorkerService 相應的服務介面。
void CreateWorkerSessionAsync(const CreateWorkerSessionRequest* request,
CreateWorkerSessionResponse* response,
StatusCallback done) override {
IssueRequest(request, response, createworkersession_, std::move(done));
}
GrpcWorkerService
遠端 Worker 之中,接收到訊息是在 GrpcWorkerService 之中,當收到 CreateWorkerSessionRequest 訊息,將 由 CreateWorkerSessionHandler 回撥處理,CreateWorkerSessionHandler 是一個巨集,其線上程池中啟動一個可執行的執行緒,觸發 Worker(就是GrpcWorker) 的 CreateWorkerSession 方法來動態建立 WorkerSession 例項。
#define HANDLE_CALL(method, may_block_on_compute_pool) \
void method##Handler(WorkerCall<method##Request, method##Response>* call) { \
auto closure = [this, call]() { \
Status s = worker_->method(&call->request, &call->response); \
if (!s.ok()) { \
VLOG(3) << "Bad response from " << #method << ": " << s; \
} \
call->SendResponse(ToGrpcStatus(s)); \
}; \
if ((may_block_on_compute_pool)) { \
worker_->env()->env->SchedClosure(std::move(closure)); \
} else { \
worker_->env()->compute_pool->Schedule(std::move(closure)); \
} \
ENQUEUE_REQUEST(method, false); \
}
HANDLE_CALL(CreateWorkerSession, false);
4. WorkerSession
其實,GrpcWorker 最終呼叫的是 WorkerInterface.CreateWorkerSession 方法。
Status CreateWorkerSession(const CreateWorkerSessionRequest* request,
CreateWorkerSessionResponse* response) {
return CallAndWait(&ME::CreateWorkerSessionAsync, request, response);
}
CreateWorkerSessionRequest 訊息之中攜帶了 MasterSession 分配的 session_handle,GrpcWorker 將據此建立一個 WorkerSession,session_handle 在這個 Worker 之內唯一標識這個 WorkerSession。
在 GrpcWorker 的 WorkerEnv 上下文之中有一個 SessionMgr,SessionMgr 負責統一管理和維護所有的 WorkerSession 生命週期。SessionMgr 與 WorkerSession 是一對多的關係,每個 WorkerSession 例項使用 session_handle 標識。
void Worker::CreateWorkerSessionAsync(const CreateWorkerSessionRequest* request,
CreateWorkerSessionResponse* response,
StatusCallback done) {
Status s = env_->session_mgr->CreateSession(
request->session_handle(), request->server_def(),
request->cluster_device_attributes(), request->isolate_session_state(),
request->master_task(), request->master_incarnation());
done(s);
}
4.1 SessionMgr
4.1.1 定義
重點是如下,維護了 session_handle 和 WorkerSession 之間的對應關係,每個 WorkerSession 由 session_handle 來標識。
-
std::map<string, std::shared_ptr
> sessions_ :維護了對應關係。 -
std::shared_ptr
legacy_session_ :本地 WorkerSession 例項。
圖 4 SessionMgr
class SessionMgr {
public:
typedef std::function<Status(const ServerDef&, WorkerCacheInterface**)>
WorkerCacheFactory;
explicit SessionMgr(
WorkerEnv* worker_env, const string& default_worker_name,
std::unique_ptr<WorkerCacheInterface> default_worker_cache,
WorkerCacheFactory worker_cache_factory);
~SessionMgr() {}
// Allocates state for a new session.
Status CreateSession(const string& session, const ServerDef& server_def,
bool isolate_session_state);
Status CreateSession(
const string& session, const ServerDef& server_def,
const protobuf::RepeatedPtrField<DeviceAttributes>& device_attributes,
bool isolate_session_state);
// Create WorkerSession from the master with the given `master_task` and
// `master_incarnation`. We first look for existing WorkerSessions associated
// with the specified master task. If there are sessions created by the same
// master but with a different incarnation, it indicates that the remote
// master has restarted before deleting the sessions on worker. When it
// happens, old sessions associated with the master will be automatically
// removed before the new session is created.
Status CreateSession(
const string& session, const ServerDef& server_def,
const protobuf::RepeatedPtrField<DeviceAttributes>& device_attributes,
bool isolate_session_state, string master_task,
int64_t master_incarnation);
void ResetDefaultWorkerCache(WorkerCacheInterface* worker_cache);
// Updates state (worker cache, devices) of worker session identified by
// session name (`session`) based on a new server_def and set of devices.
Status UpdateSession(const string& session, const ServerDef& server_def,
const protobuf::RepeatedPtrField<DeviceAttributes>&
cluster_device_attributes,
bool isolate_session_state);
// Locates the worker session for a given session handle
Status WorkerSessionForSession(const string& session_handle,
std::shared_ptr<WorkerSession>* out_session);
std::shared_ptr<WorkerSession> LegacySession();
Status DeleteSession(const string& session);
static string WorkerNameFromServerDef(const ServerDef& server_def);
void SetLogging(bool active);
void RetrieveLogs(int64_t step_id, LoggingResponse* response);
void ClearLogs();
private:
WorkerEnv* const worker_env_; // Not owned.
// A note about destruction:
// We must delete graph_mgr before device_mgr, due to shared
// ownership of OpKernels in the executors. (The graph_mgr will
// free all stateless OpKernels, and pass over borrowed stateful
// OpKernels, which are also held in their respective devices'
// OpSegments.)
//
// legacy_session_ owns the worker_env_.device_mgr, and so we must ensure
// that sessions_'s WorkerSessions are deleted (which do not own the
// underlying devices, but instead own RenamedDevices) before
// legacy_session_ is deleted. Further, we must ensure that WorkerSession's
// device_mgr is deleted after WorkerSession's graph_mgr.
std::unique_ptr<WorkerCacheInterface> default_worker_cache_;
std::shared_ptr<WorkerSession> legacy_session_;
bool is_logging_active_ = false;
const WorkerCacheFactory worker_cache_factory_;
Status WorkerSessionForSessionLocked(
const string& session_handle, std::shared_ptr<WorkerSession>* out_session)
TF_EXCLUSIVE_LOCKS_REQUIRED(mu_);
mutex mu_;
// A map from session identifier to internal session structure.
std::map<string, std::shared_ptr<WorkerSession>> sessions_ TF_GUARDED_BY(mu_);
// Incarnation and WorkerSession handle associated with a master task.
struct MasterAssociatedSession {
const int64_t master_incarnation;
const string session_handle;
};
// A map from master task name to its associated worker sessions.
std::unordered_multimap<string, MasterAssociatedSession>
master_to_associated_sessions_ TF_GUARDED_BY(mu_);
};
4.1.2 建立 Session
CreateSession 方法會建立 WorkerSession 和 GraphMgr。
Status SessionMgr::CreateSession(
const string& session, const ServerDef& server_def,
const protobuf::RepeatedPtrField<DeviceAttributes>&
cluster_device_attributes,
bool isolate_session_state, string master_task,
int64_t master_incarnation) {
mutex_lock l(mu_);
if (session.empty()) {
return errors::InvalidArgument("Session must be non-empty.");
}
// For given master task name, check if one or more `WorkerSession`s have been
// created previously on this worker, and if so garbage collect the expired
// `WorkerSession`s. This happens when the master fails before sending
// `DeleteSession` requests, which can cause `WorkerSession`s to be leaked.
if (!master_task.empty()) {
auto it_range = master_to_associated_sessions_.equal_range(master_task);
if (it_range.first != it_range.second &&
it_range.first->second.master_incarnation != master_incarnation) {
auto it = it_range.first;
while (it != it_range.second) {
auto session_it = sessions_.find(it->second.session_handle);
if (session_it != sessions_.end()) {
sessions_.erase(session_it);
}
it = master_to_associated_sessions_.erase(it);
}
}
}
WorkerCacheInterface* worker_cache = nullptr;
string worker_name;
if (server_def.cluster().job().empty()) {
worker_cache = new WorkerCacheWrapper(default_worker_cache_.get());
worker_name = legacy_session_->worker_name();
} else {
TF_RETURN_IF_ERROR(worker_cache_factory_(server_def, &worker_cache));
worker_name = WorkerNameFromServerDef(server_def);
}
if (worker_cache != nullptr && default_worker_cache_ != nullptr) {
worker_cache->SetLogging(this->is_logging_active_);
}
std::shared_ptr<WorkerSession> worker_session;
std::vector<std::unique_ptr<Device>> cluster_devices;
if (isolate_session_state || server_def.cluster().job_size()) {
// Create a private copy of the DeviceMgr for the WorkerSession.
std::vector<std::unique_ptr<Device>> renamed_devices;
for (Device* d : worker_env_->local_devices) {
renamed_devices.push_back(RenamedDevice::NewRenamedDevice(
worker_name, d, false, isolate_session_state));
}
auto device_mgr = MakeUnique<StaticDeviceMgr>(std::move(renamed_devices));
LookupLocalDevice cb = [&device_mgr](StringPiece name, Device** device) {
return device_mgr->LookupDevice(name, device);
};
AsRemoteDevices(worker_env_->env, cluster_device_attributes, cb,
&cluster_devices);
std::unique_ptr<DynamicDeviceMgr> remote_devices;
if (!cluster_device_attributes.empty()) {
remote_devices = MakeUnique<DynamicDeviceMgr>();
TF_RETURN_IF_ERROR(
remote_devices->AddDevices(std::move(cluster_devices)));
}
auto graph_mgr = MakeUnique<GraphMgr>(worker_env_, device_mgr.get());
worker_session.reset(
new WorkerSession(session, worker_name,
std::unique_ptr<WorkerCacheInterface>(worker_cache),
std::move(device_mgr), std::move(graph_mgr),
std::move(remote_devices)));
} else {
AsRemoteDevices(worker_env_->env, cluster_device_attributes, nullptr,
&cluster_devices);
std::unique_ptr<DynamicDeviceMgr> remote_devices;
if (!cluster_device_attributes.empty()) {
remote_devices = MakeUnique<DynamicDeviceMgr>();
TF_RETURN_IF_ERROR(
remote_devices->AddDevices(std::move(cluster_devices)));
}
// Borrow the WorkerEnv's DeviceMgr for the WorkerSession, so
// that resources using it can use its devices after the
// WorkerSession has been deleted.
auto graph_mgr = MakeUnique<GraphMgr>(worker_env_, worker_env_->device_mgr);
worker_session = WorkerSession::CreateWithBorrowedDeviceMgr(
session, worker_name,
std::unique_ptr<WorkerCacheInterface>(worker_cache),
worker_env_->device_mgr, std::move(graph_mgr),
std::move(remote_devices));
}
sessions_.insert(std::make_pair(session, std::move(worker_session)));
if (!master_task.empty()) {
MasterAssociatedSession s{master_incarnation, session};
master_to_associated_sessions_.emplace(master_task, s);
}
return Status::OK();
}
4.1.3 註冊圖
我們用 RegisterGraphAsync 為例來看看 worker 內部功能。可以看到其使用 GraphMgr 完成了基礎功能。
void Worker::RegisterGraphAsync(const RegisterGraphRequest* request,
RegisterGraphResponse* response,
StatusCallback done) {
std::shared_ptr<WorkerSession> session;
Status s;
if (request->create_worker_session_called()) {
s = env_->session_mgr->WorkerSessionForSession(request->session_handle(),
&session);
} else {
session = env_->session_mgr->LegacySession();
}
if (s.ok()) {
s = session->graph_mgr()->Register(
request->session_handle(), request->graph_def(), session.get(),
request->graph_options(), request->debug_options(),
request->config_proto(), request->collective_graph_key(),
session->cluster_flr(), response->mutable_graph_handle());
}
done(s);
}
4.2 WorkerSession
4.2.1 定義
WorkerSession 之中比較重要的幾個成員變數包括幾個管理類 GraphMgr,DeviceMgr,DynamicDeviceMgr:
-
string session_name_ :Session 名稱。
-
string worker_name_ :Worker 名稱,比如 /job:mnist/replica:0/task:1。
-
std::shared_ptr
worker_cache_ :Worker 快取。 -
std::unique_ptr
graph_mgr_ :本 session 註冊的計算圖,每個 Worker 可以註冊和執行多個計算圖,每個計算圖使用 graph)handle 標識。 -
std::unique_ptr
device_mgr_ :本地計算裝置集合資訊。
圖 5 WorkerSession 概念
// WorkerSession encapsulates all of the state relating to a given session.
class WorkerSession {
public:
// Collection of local devices. These devices are typically
// RenamedDevices in all except the SessionMgr.legacy_session_ and
// sessions created with `isolate_session_state == false`. In the
// those cases, this method returns a pointer to a borrowed
// DeviceMgr (typically the `worker_env.device_mgr`).
DeviceMgr* device_mgr() {
return device_mgr_ ? device_mgr_.get() : borrowed_device_mgr_;
}
DynamicDeviceMgr* remote_device_mgr() { return remote_device_mgr_.get(); }
const string& session_name() const { return session_name_; }
const string& worker_name() const { return worker_name_; }
WorkerCacheInterface* worker_cache() const {
tf_shared_lock l(worker_session_state_mu_);
return worker_cache_.get();
}
GraphMgr* graph_mgr() const { return graph_mgr_.get(); }
ClusterFunctionLibraryRuntime* cluster_flr() const {
return cluster_flr_.get();
}
WorkerSession(const string& session_name, const string& worker_name,
std::unique_ptr<WorkerCacheInterface> worker_cache,
std::unique_ptr<DeviceMgr> device_mgr,
std::unique_ptr<GraphMgr> graph_mgr,
std::unique_ptr<DynamicDeviceMgr> remote_device_mgr);
static std::shared_ptr<WorkerSession> CreateWithBorrowedDeviceMgr(
const string& session_name, const string& worker_name,
std::unique_ptr<WorkerCacheInterface> worker_cache,
DeviceMgr* borrowed_device_mgr, std::unique_ptr<GraphMgr> graph_mgr,
std::unique_ptr<DynamicDeviceMgr> remote_device_mgr);
// In the eager runtime we allow WorkerSession to be updated, where the
// worker cache will be recreated. If WorkerSession upate is expected and a
// worker in the cache is used in RPCs, the caller should hold a shared
// pointer to avoid the workers getting deleted.
std::shared_ptr<WorkerCacheInterface> GetSharedWorkerCache() {
tf_shared_lock l(worker_session_state_mu_);
return worker_cache_;
}
// Update an existing worker session with new set of remote workers and
// devices. Added devices will be owned by the worker session, and removed
// devices will be freed by their names.
Status UpdateWorkerCacheAndDevices(
std::unique_ptr<WorkerCacheInterface> new_worker_cache,
std::vector<std::unique_ptr<Device>> added_remote_devices,
const std::vector<Device*>& removed_remote_devices);
~WorkerSession();
private:
WorkerSession(const string& session_name, const string& worker_name,
std::unique_ptr<WorkerCacheInterface> worker_cache,
DeviceMgr* borrowed_device_mgr,
std::unique_ptr<GraphMgr> graph_mgr,
std::unique_ptr<DynamicDeviceMgr> remote_device_mgr);
// The name of the session.
const string session_name_;
// The name of the worker. E.g., /job:mnist/replica:0/task:1.
const string worker_name_;
mutable mutex worker_session_state_mu_;
// Object from which WorkerInterface instances can be obtained.
std::shared_ptr<WorkerCacheInterface> worker_cache_
TF_GUARDED_BY(worker_session_state_mu_);
// graph_mgr keeps track of the registered graphs of this session.
//
// Note: graph_mgr must be deleted before rendezvous_mgr!
// Note: graph_mgr must be deleted before device_mgr!
const std::unique_ptr<GraphMgr> graph_mgr_;
std::unique_ptr<ClusterFunctionLibraryRuntime> cluster_flr_;
const std::unique_ptr<DeviceMgr> device_mgr_;
DeviceMgr* const borrowed_device_mgr_; // Not owned.
std::unique_ptr<DynamicDeviceMgr> remote_device_mgr_;
};
至此,session 基本流程我們梳理完成,下面就會對業務進行詳細分析。