[原始碼解析] TensorFlow 分散式環境(7) --- Worker 動態邏輯
前文中,Master 在流程之中先後呼叫了 gRPC 給遠端 worker 傳送命令,即,GrpcRemoteWorker 類中的每一個函式都通過呼叫 IssueRequest() 發起一個非同步的 gRPC 呼叫。GrpcRemoteWorker 一共發了兩個請求:RegisterGraphAsync,RunGraphAsync,我們看看 GrpcWorkerService 如何處理。
本文依舊深度借鑑了兩位大神:
- [TensorFlow Internals] (https://github.com/horance-liu/tensorflow-internals),雖然其分析的不是最新程式碼,但是建議對 TF 內部實現機制有興趣的朋友都去閱讀一下,絕對大有收穫。
- https://home.cnblogs.com/u/deep-learning-stacks/ 西門宇少,不僅僅是 TensorFlow,其公共號還有更多其他領域,業界前沿。
本系列其他文章是:
[翻譯] TensorFlow 分散式之論文篇 "Implementation of Control Flow in TensorFlow"
[原始碼解析] TensorFlow 分散式環境(1) --- 總體架構
[原始碼解析] TensorFlow 分散式環境(2)---Master 靜態邏輯
[原始碼解析] TensorFlow 分散式環境(3)--- Worker 靜態邏輯
[原始碼解析] TensorFlow 分散式環境(4) --- WorkerCache
[原始碼解析] TensorFlow 分散式環境(5) --- Session
1. 概述
1.1 溫故
我們首先回顧一下目前為止各種概念之間的關係。
- Client會構建完整的計算圖(FullGraph),但是這個完整計算圖無法並行執行,所以需要切分優化。
- Master會對完整計算圖進行處理,比如剪枝等操作,生成ClientGraph(可以執行的最小依賴子圖)。然後根據Worker資訊把ClientGraph繼續切分成多個PartitionGraph。把這些PartitionGraph註冊給每個Worker。
- Worker接收到註冊請求之後,會把收到的PartitionGraph根據本地計算裝置集繼續做切分成多個PartitionGraph,並且在每個裝置上啟動一個Executor來執行本裝置收到的PartitionGraph。
1.2 知新
我們接下來看看Worker的流程概要。當流程來到某個特點 Worker 節點,如果 worker 節點收到了 RegisterGraphRequest,訊息會攜帶 MasterSession 分配的 session_handle 和子圖 graph_def(GraphDef形式)。GraphDef是TensorFlow把Client建立的計算圖使用Protocol Buffer序列化之後的結果。GraphDef包括了計算圖所有的後設資料。它可以被ConvertGraphDefToGraph方法轉換成Graph。Graph不但有計算圖的後設資料,還有其他執行時候所需要的資訊。
Worker 把計算圖按照本地裝置集繼續切分成多個 PartitionGraph,把PartitionGraph 分配給每個裝置,然後在每個計算裝置之上啟動一個 Executor,等待後續執行命令。Executor類是TensorFlow之中會話執行器的抽象,其提供非同步執行區域性圖的RunAsync虛方法及其同步封裝版本Run方法。
當 Worker 節點收到 RunGraphAsync 之後,各個裝置開始執行。WorkerSession 會呼叫 session->graph_mgr()->ExecuteAsync 執行,其又呼叫到 StartParallelExecutors,這裡會啟動一個 ExecutorBarrier。當某一個計算裝置執行完所分配的 PartitionGraph 後,ExecutorBarrier 計數器將會增加 1,如果所有裝置都完成 PartitionGraph 列表的執行,barrier.wait() 阻塞操作將退出。
我們接下來逐步分析一下上述流程。
2. 註冊子圖
當 worker 節點收到了 RegisterGraphRequest 之後,首先來到了 GrpcWorkerService,所以實際呼叫的是 "/tensorflow.WorkerService/RegisterGraph",對應程式碼如下,其實展開了就是 RegisterGraphHandler:
#define HANDLE_CALL(method, may_block_on_compute_pool) \
void method##Handler(WorkerCall<method##Request, method##Response>* call) { \
auto closure = [this, call]() { \
Status s = worker_->method(&call->request, &call->response); \
if (!s.ok()) { \
VLOG(3) << "Bad response from " << #method << ": " << s; \
} \
call->SendResponse(ToGrpcStatus(s)); \
}; \
if ((may_block_on_compute_pool)) { \
worker_->env()->env->SchedClosure(std::move(closure)); \
} else { \
worker_->env()->compute_pool->Schedule(std::move(closure)); \
} \
ENQUEUE_REQUEST(method, false); \
}
HANDLE_CALL(RegisterGraph, false);
2.1 GrpcWorker
RegisterGraph 實際呼叫的是 WorkerInterface 的方法,其內部會轉到 RegisterGraphAsync 方法。
Status WorkerInterface::RegisterGraph(const RegisterGraphRequest* request,
RegisterGraphResponse* response) {
return CallAndWait(&ME::RegisterGraphAsync, request, response);
}
RegisterGraphAsync 最後來到 Worker 的實現,其首先依據 session_handle 查詢到 WokerSession,然後呼叫 GraphMgr。
GraphMgr* SessionMgr::graph_mgr() const { return graph_mgr_.get(); }
RegisterGraphAsync 具體如下:
void Worker::RegisterGraphAsync(const RegisterGraphRequest* request,
RegisterGraphResponse* response,
StatusCallback done) {
std::shared_ptr<WorkerSession> session;
Status s;
if (request->create_worker_session_called()) {
s = env_->session_mgr->WorkerSessionForSession(request->session_handle(),
&session);
} else {
session = env_->session_mgr->LegacySession();
}
if (s.ok()) {
s = session->graph_mgr()->Register(
request->session_handle(), request->graph_def(), session.get(),
request->graph_options(), request->debug_options(),
request->config_proto(), request->collective_graph_key(),
session->cluster_flr(), response->mutable_graph_handle());
}
done(s);
}
2.2 GraphMgr
GraphMgr 負責跟蹤一組在 TensorFlow 工作者那裡註冊的計算圖。每個註冊的圖都由 GraphMgr 生成的控制程式碼 graph_handle 來識別,並返回給呼叫者。在成功註冊後,呼叫者使用圖控制程式碼執行一個圖。每個執行都通過呼叫者生成的全域性唯一ID "step_id"與其他執行區分開來。只要使用的 "step_id"不同,多個執行可以同時獨立使用同一個圖,多個執行緒可以併發地呼叫 GraphMgr 方法。
2.2.1 定義
GraphMgr 具體定義如下:
class GraphMgr {
private:
typedef GraphMgr ME;
struct ExecutionUnit {
std::unique_ptr<Graph> graph = nullptr;
Device* device = nullptr; // not owned.
Executor* root = nullptr; // not owned.
FunctionLibraryRuntime* lib = nullptr; // not owned.
// Build the cost model if this value is strictly positive.
int64_t build_cost_model = 0;
};
struct Item : public core::RefCounted {
~Item() override;
// Session handle.
string session;
// Graph handle.
string handle;
std::unique_ptr<FunctionLibraryDefinition> lib_def;
// Owns the FunctionLibraryRuntime objects needed to execute functions, one
// per device.
std::unique_ptr<ProcessFunctionLibraryRuntime> proc_flr;
// A graph is partitioned over multiple devices. Each partition
// has a root executor which may call into the runtime library.
std::vector<ExecutionUnit> units;
// Used to deregister a cost model when cost model is required in graph
// manager.
GraphMgr* graph_mgr;
int64_t collective_graph_key;
};
const WorkerEnv* worker_env_; // Not owned.
const DeviceMgr* device_mgr_;
CostModelManager cost_model_manager_;
// Owned.
mutex mu_;
int64_t next_id_ TF_GUARDED_BY(mu_) = 0;
// If true, blocks until device has finished all queued operations in a step.
bool sync_on_finish_ = true;
// Table mapping graph handles to registered graphs.
//
// TODO(zhifengc): If the client does not call Deregister, we'll
// lose memory over time. We should implement a timeout-based
// mechanism to gc these graphs.
std::unordered_map<string, Item*> table_;
TF_DISALLOW_COPY_AND_ASSIGN(GraphMgr);
};
具體各個類之間關係和功能如下,註冊圖就是往GraphMgr的table_變數之中進行註冊新Item,而執行圖就是執行具體的Item。
2.2.2 註冊圖
註冊圖程式碼如下,其實就是轉交給 InitItem,所以我們接下去看看 InitItem。
Status GraphMgr::Register(
const string& handle, const GraphDef& gdef, WorkerSession* session,
const GraphOptions& graph_options, const DebugOptions& debug_options,
const ConfigProto& config_proto, int64_t collective_graph_key,
DistributedFunctionLibraryRuntime* cluster_flr, string* graph_handle) {
Item* item = new Item;
Status s = InitItem(handle, gdef, session, graph_options, debug_options,
config_proto, collective_graph_key, cluster_flr, item);
if (!s.ok()) {
item->Unref();
return s;
}
// Inserts one item into table_.
{
mutex_lock l(mu_);
*graph_handle =
strings::Printf("%016llx", static_cast<long long>(++next_id_));
item->handle = *graph_handle;
CHECK(table_.insert({*graph_handle, item}).second);
}
return Status::OK();
}
InitItem 主要功能是:
-
在給定 session 的一個圖定義 "gdef" 之後,建立 executors。
-
如果 "gdef"中的一個節點被 "session "中的其他圖所共享,則相同的 op kernel 被重複使用。例如,通常一個params節點被一個會話中的多個圖所共享。
-
如果 "gdef"被分配給多個裝置,可能會新增額外的節點(例如,傳送/接收節點)。額外節點的名字是通過呼叫 "new_name(old_name) "生成的。
-
如果成功的話,"executors"將被分配,每個裝置填入一個執行器,呼叫者將擁有返回的 executors 的所有權。
// Creates executors given a graph definition "gdef" of a "session".
// If a node in "gdef" is shared by other graphs in "session", the
// same op kernel is reused. E.g., typically a params node is shared
// by multiple graphs in a session.
//
// If "gdef" is assigned to multiple devices, extra nodes (e.g.,
// send/recv nodes) maybe added. The extra nodes' name are generated
// by calling "new_name(old_name)".
//
// "executors" are filled with one executor per device if success and
// the caller takes the ownership of returned executors.
Status GraphMgr::InitItem(
const string& handle, const GraphDef& gdef, WorkerSession* session,
const GraphOptions& graph_options, const DebugOptions& debug_options,
const ConfigProto& config_proto, int64_t collective_graph_key,
DistributedFunctionLibraryRuntime* cluster_flr, Item* item) {
item->session = handle;
item->collective_graph_key = collective_graph_key;
item->lib_def.reset(
new FunctionLibraryDefinition(OpRegistry::Global(), gdef.library()));
TF_RETURN_IF_ERROR(ValidateGraphDefForDevices(gdef));
// We don't explicitly Validate the graph def because ConvertGraphDefToGraph
// does that below.
item->proc_flr.reset(new ProcessFunctionLibraryRuntime(
device_mgr_, worker_env_->env, /*config=*/&config_proto,
gdef.versions().producer(), item->lib_def.get(),
graph_options.optimizer_options(), worker_env_->compute_pool, cluster_flr,
/*session_metadata=*/nullptr,
Rendezvous::Factory{
[this, session](const int64_t step_id, const DeviceMgr*,
Rendezvous** r) -> Status {
auto* remote_r = this->worker_env_->rendezvous_mgr->Find(step_id);
TF_RETURN_IF_ERROR(remote_r->Initialize(session));
*r = remote_r;
return Status::OK();
},
[this](const int64_t step_id) {
this->worker_env_->rendezvous_mgr->Cleanup(step_id);
return Status::OK();
}}));
// Constructs the graph out of "gdef".
Graph graph(OpRegistry::Global());
GraphConstructorOptions opts;
opts.allow_internal_ops = true;
opts.expect_device_spec = true;
opts.validate_nodes = true;
TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(opts, gdef, &graph));
// Splits "graph" into multiple subgraphs by device names.
std::unordered_map<string, GraphDef> partitions;
PartitionOptions popts;
popts.node_to_loc = SplitByDevice; // 這裡呼叫了
popts.new_name = [this](const string& prefix) {
mutex_lock l(mu_);
return strings::StrCat(prefix, "_G", next_id_++);
};
popts.get_incarnation = [this](const string& name) -> int64 {
Device* device = nullptr;
Status s = device_mgr_->LookupDevice(name, &device);
if (s.ok()) {
return device->attributes().incarnation();
} else {
return PartitionOptions::kIllegalIncarnation;
}
};
popts.flib_def = item->lib_def.get();
popts.control_flow_added = true;
popts.scheduling_for_recvs = graph_options.enable_recv_scheduling();
TF_RETURN_IF_ERROR(Partition(popts, &graph, &partitions));
if (popts.scheduling_for_recvs) {
TF_RETURN_IF_ERROR(AddControlEdges(popts, &partitions));
}
std::unordered_map<string, std::unique_ptr<Graph>> partition_graphs;
// 對每個分割槽進行圖轉換
for (auto& partition : partitions) {
std::unique_ptr<Graph> device_graph(new Graph(OpRegistry::Global()));
GraphConstructorOptions device_opts;
// There are internal operations (e.g., send/recv) that we now allow.
device_opts.allow_internal_ops = true;
device_opts.expect_device_spec = true;
TF_RETURN_IF_ERROR(ConvertGraphDefToGraph(
device_opts, std::move(partition.second), device_graph.get()));
partition_graphs.emplace(partition.first, std::move(device_graph));
}
GraphOptimizationPassOptions optimization_options;
optimization_options.flib_def = item->lib_def.get();
optimization_options.partition_graphs = &partition_graphs;
TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping(
OptimizationPassRegistry::POST_PARTITIONING, optimization_options));
LocalExecutorParams params;
item->units.reserve(partitions.size());
item->graph_mgr = this;
const auto& optimizer_opts = graph_options.optimizer_options();
GraphOptimizer optimizer(optimizer_opts);
for (auto& p : partition_graphs) {
const string& device_name = p.first;
std::unique_ptr<Graph>& subgraph = p.second;
item->units.resize(item->units.size() + 1);
ExecutionUnit* unit = &(item->units.back());
// Find the device.
Status s = device_mgr_->LookupDevice(device_name, &unit->device);
if (!s.ok()) {
// Remove the empty unit from the item as the item destructor wants all
// units to have valid devices.
item->units.pop_back();
return s;
}
// 看看是否需要重寫圖
// Give the device an opportunity to rewrite its subgraph.
TF_RETURN_IF_ERROR(unit->device->MaybeRewriteGraph(&subgraph));
// Top-level nodes in the graph uses the op segment to cache
// kernels. Therefore, as long as the executor is alive, we need
// to ensure the kernels cached for the session are alive.
auto opseg = unit->device->op_segment();
opseg->AddHold(handle);
// Function library runtime.
FunctionLibraryRuntime* lib = item->proc_flr->GetFLR(unit->device->name());
// 建立 executor
// Construct the root executor for the subgraph.
params.device = unit->device;
params.function_library = lib;
params.create_kernel =
[handle, lib, opseg](const std::shared_ptr<const NodeProperties>& props,
OpKernel** kernel) {
// NOTE(mrry): We must not share function kernels (implemented
// using `CallOp`) between subgraphs, because `CallOp::handle_`
// is tied to a particular subgraph. Even if the function itself
// is stateful, the `CallOp` that invokes it is not.
if (!OpSegment::ShouldOwnKernel(lib, props->node_def.op())) {
return lib->CreateKernel(props, kernel);
}
auto create_fn = [lib, &props](OpKernel** kernel) {
return lib->CreateKernel(props, kernel);
};
// Kernels created for subgraph nodes need to be cached. On
// cache miss, create_fn() is invoked to create a kernel based
// on the function library here + global op registry.
return opseg->FindOrCreate(handle, props->node_def.name(), kernel,
create_fn);
};
params.delete_kernel = [lib](OpKernel* kernel) {
if (kernel && !OpSegment::ShouldOwnKernel(lib, kernel->type_string())) {
delete kernel;
}
};
// 優化圖
optimizer.Optimize(lib, worker_env_->env, params.device, &subgraph,
GraphOptimizer::Options());
TF_RETURN_IF_ERROR(
EnsureMemoryTypes(DeviceType(unit->device->device_type()),
unit->device->name(), subgraph.get()));
unit->graph = std::move(subgraph);
unit->build_cost_model = graph_options.build_cost_model();
if (unit->build_cost_model > 0) {
skip_cost_models_ = false;
}
TF_RETURN_IF_ERROR(NewLocalExecutor(params, *unit->graph, &unit->root));
}
return Status::OK();
}
上面需要注意的一點是使用了 SplitByDevice 進行圖的二次切分,這次是按照裝置來切分。
// NOTE: node->device_name() is not set by GraphConstructor. We
// expects that NodeDef in GraphDef given to workers fully specifies
// device names.
static string SplitByDevice(const Node* node) {
return node->assigned_device_name();
}
inline const std::string& Node::assigned_device_name() const {
return graph_->get_assigned_device_name(*this);
}
註冊圖的結果大致如下,就是使用Master傳來的各種資訊來生成一個Item,註冊在GraphMgr之中,同時也為Item生成ExecutionUnit,其中graph_handle是根據handle生成的。
註冊完子圖之後,後續就可以執行子圖。
3. 執行子圖
Master 用 RunGraphRequest 來執行在 graph_handle下注冊的所有子圖。Master 會生成一個全域性唯一的 step_id 來區分圖計算的不同執行 step。子圖之間可以使用 step_id 進行彼此通訊(例如,傳送/轉發操作),以區分不同執行產生的張量。
RunGraphRequest 訊息的 send 表示子圖輸入的張量,recv_key 指明子圖輸出的張量。RunGraphResponse 會返回 recv_key 對應的 Tensor 列表。
3.1 Service
首先來到了 GrpcWorkerService,呼叫到的是 "/tensorflow.WorkerService/RunGraph",對應的程式碼是:
void RunGraphHandler(WorkerCall<RunGraphRequest, RunGraphResponse>* call) {
// 利用Schedule把計算任務放進執行緒池佇列中
Schedule([this, call]() {
CallOptions* call_opts = new CallOptions;
ProtoRunGraphRequest* wrapped_request =
new ProtoRunGraphRequest(&call->request);
NonOwnedProtoRunGraphResponse* wrapped_response =
new NonOwnedProtoRunGraphResponse(&call->response);
call->SetCancelCallback([call_opts]() { call_opts->StartCancel(); });
worker_->RunGraphAsync(call_opts, wrapped_request, wrapped_response,
[call, call_opts, wrapped_request,
wrapped_response](const Status& s) {
call->ClearCancelCallback();
delete call_opts;
delete wrapped_request;
delete wrapped_response;
call->SendResponse(ToGrpcStatus(s));
});
});
ENQUEUE_REQUEST(RunGraph, true);
}
這裡是把計算任務放進執行緒池佇列中,具體業務邏輯在 Worker::RunGraphAsync 函式中。
void Schedule(std::function<void()> f) {
worker_->env()->compute_pool->Schedule(std::move(f));
}
3.2 GrpcWorker
在 RunGraphAsync 之中,有兩種執行方式,我們選擇 DoRunGraph 來分析。
void Worker::RunGraphAsync(CallOptions* opts, RunGraphRequestWrapper* request,
MutableRunGraphResponseWrapper* response,
StatusCallback done) {
if (request->store_errors_in_response_body()) {
done = [response, done](const Status& status) {
response->set_status(status);
done(Status::OK());
};
}
if (request->is_partial()) {
DoPartialRunGraph(opts, request, response, std::move(done)); // 有興趣讀者可以深入研究
} else {
DoRunGraph(opts, request, response, std::move(done)); // 分析這裡
}
}
DoRunGraph 主要是呼叫了 session->graph_mgr()->ExecuteAsync 來執行計算圖。
void Worker::DoRunGraph(CallOptions* opts, RunGraphRequestWrapper* request,
MutableRunGraphResponseWrapper* response,
StatusCallback done) {
const int64_t step_id = request->step_id();
Status s = recent_request_ids_.TrackUnique(request->request_id(),
"RunGraph (Worker)", request);
if (!s.ok()) {
done(s);
return;
}
std::shared_ptr<WorkerSession> session;
if (request->create_worker_session_called()) {
s = env_->session_mgr->WorkerSessionForSession(request->session_handle(),
&session);
} else {
session = env_->session_mgr->LegacySession();
}
if (!s.ok()) {
done(s);
return;
}
GraphMgr::NamedTensors in;
GraphMgr::NamedTensors* out = new GraphMgr::NamedTensors;
s = PrepareRunGraph(request, &in, out);
if (!s.ok()) {
delete out;
done(s);
return;
}
StepStatsCollector* collector = nullptr;
if (request->exec_opts().report_tensor_allocations_upon_oom() ||
request->exec_opts().record_timeline() ||
request->exec_opts().record_costs()) {
collector = new StepStatsCollector(response->mutable_step_stats());
}
DeviceProfilerSession* device_profiler_session = nullptr;
if (collector && request->exec_opts().record_timeline()) {
// If timeline was requested, assume we want hardware level tracing.
device_profiler_session = DeviceProfilerSession::Create().release();
}
CancellationManager* cm = new CancellationManager;
opts->SetCancelCallback([this, cm, step_id]() {
cm->StartCancel();
AbortStep(step_id);
});
CancellationToken token;
token = cancellation_manager_.get_cancellation_token();
bool already_cancelled = !cancellation_manager_.RegisterCallback(
token, [cm]() { cm->StartCancel(); });
if (already_cancelled) {
opts->ClearCancelCallback();
delete cm;
delete collector;
delete device_profiler_session;
delete out;
done(errors::Aborted("Call was aborted"));
return;
}
session->graph_mgr()->ExecuteAsync(
request->graph_handle(), step_id, session.get(), request->exec_opts(),
collector, response, cm, in,
[this, step_id, response, session, cm, out, token, collector,
device_profiler_session, opts, done](const Status& status) {
Status s = status;
if (s.ok()) {
// 接受張量
s = session->graph_mgr()->RecvOutputs(step_id, out);
}
opts->ClearCancelCallback();
cancellation_manager_.DeregisterCallback(token);
delete cm;
if (device_profiler_session) {
device_profiler_session->CollectData(response->mutable_step_stats())
.IgnoreError();
}
if (s.ok()) {
for (const auto& p : *out) {
const string& key = p.first;
const Tensor& val = p.second;
response->AddRecv(key, val);
}
}
if (collector) collector->Finalize();
delete collector;
delete device_profiler_session;
delete out;
done(s);
});
}
3.3 GraphMgr
ExecuteAsync 呼叫了 StartParallelExecutors 完成平行計算,具體邏輯大致為:
- 找到一個子圖;
- 計運算元圖 cost;
- 生成一個 rendezvous,使用本 session 初始化 rendezvous,後續就是用這個 rendezvous 來通訊,rendezvous 利用 session 進行通訊;
- 傳送張量到 Rendezvous;
- 呼叫 StartParallelExecutors 執行子計算圖;
void GraphMgr::ExecuteAsync(const string& handle, const int64_t step_id,
WorkerSession* session, const ExecutorOpts& opts,
StepStatsCollector* collector,
MutableRunGraphResponseWrapper* response,
CancellationManager* cancellation_manager,
const NamedTensors& in, StatusCallback done) {
const uint64 start_time_usecs = Env::Default()->NowMicros();
profiler::TraceMeProducer activity(
// To TraceMeConsumers in ExecutorState::Process/Finish or RunGraphDone.
[step_id] {
return profiler::TraceMeEncode(
"RunGraph", {{"id", step_id}, {"_r", 1} /*root_event*/});
},
profiler::ContextType::kTfExecutor, step_id,
profiler::TraceMeLevel::kInfo);
// Lookup an item. Holds one ref while executing.
// 找到一個子圖
Item* item = nullptr;
{
mutex_lock l(mu_);
auto iter = table_.find(handle);
if (iter != table_.end()) {
item = iter->second;
item->Ref();
}
}
// 計算cost
CostGraphDef* cost_graph = nullptr;
if (response != nullptr) {
cost_graph = response->mutable_cost_graph();
if (opts.record_partition_graphs()) {
for (const ExecutionUnit& unit : item->units) {
GraphDef graph_def;
unit.graph->ToGraphDef(&graph_def);
response->AddPartitionGraph(graph_def);
}
}
}
// 生成一個rendezvous
RemoteRendezvous* rendezvous = worker_env_->rendezvous_mgr->Find(step_id);
// 使用本session初始化rendezvous,後續就是用這個rendezvous來通訊,rendezvous 利用session進行通訊
Status s = rendezvous->Initialize(session);
CollectiveExecutor::Handle* ce_handle =
item->collective_graph_key != BuildGraphOptions::kNoCollectiveGraphKey
? new CollectiveExecutor::Handle(
worker_env_->collective_executor_mgr->FindOrCreate(step_id),
true)
: nullptr;
// Sends values specified by the caller.
// 傳送張量到Rendezvous
size_t input_size = 0;
if (s.ok()) {
std::vector<string> keys;
std::vector<Tensor> tensors_to_send;
keys.reserve(in.size());
tensors_to_send.reserve(in.size());
for (auto& p : in) {
keys.push_back(p.first);
tensors_to_send.push_back(p.second);
input_size += p.second.AllocatedBytes();
}
// 傳送張量
s = SendTensorsToRendezvous(rendezvous, nullptr, {}, keys, tensors_to_send);
}
if (!s.ok()) {
done(s);
delete ce_handle;
item->Unref();
rendezvous->Unref();
return;
}
// 執行子計算圖
StartParallelExecutors(
handle, step_id, item, rendezvous, ce_handle, collector, cost_graph,
cancellation_manager, session, start_time_usecs,
[item, rendezvous, ce_handle, done, start_time_usecs, input_size,
step_id](const Status& s) {
profiler::TraceMeConsumer activity(
// From TraceMeProducer in GraphMgr::ExecuteAsync.
[step_id] {
return profiler::TraceMeEncode("RunGraphDone", {{"id", step_id}});
},
profiler::ContextType::kTfExecutor, step_id,
profiler::TraceMeLevel::kInfo);
done(s);
metrics::RecordGraphInputTensors(input_size);
metrics::UpdateGraphExecTime(Env::Default()->NowMicros() -
start_time_usecs);
rendezvous->Unref();
item->Unref();
delete ce_handle;
});
}
具體大致如下,ExecuteAsync使用handle來查詢Item,進而找到計算圖。其中session用來通訊和執行,step_id與通訊相關,具體可以參見上面程式碼。
StartParallelExecutors 會啟動一個 ExecutorBarrier。當某一個計算裝置執行完所分配的 PartitionGraph 後,ExecutorBarrier 計數器將會增加 1,如果所有裝置都完成 PartitionGraph 列表的執行,barrier.wait() 阻塞操作將退出。
void GraphMgr::StartParallelExecutors(
const string& handle, int64_t step_id, Item* item, Rendezvous* rendezvous,
CollectiveExecutor::Handle* ce_handle, StepStatsCollector* collector,
CostGraphDef* cost_graph, CancellationManager* cancellation_manager,
WorkerSession* session, int64_t start_time_usecs, StatusCallback done) {
const int num_units = item->units.size();
ScopedStepContainer* step_container = new ScopedStepContainer(
step_id,
[this](const string& name) { device_mgr_->ClearContainers({name}); });
ExecutorBarrier* barrier =
new ExecutorBarrier(num_units, rendezvous,
[this, item, collector, cost_graph, step_container,
done](const Status& s) {
BuildCostModel(item, collector, cost_graph);
done(s);
delete step_container;
});
Executor::Args args;
args.step_id = step_id;
args.rendezvous = rendezvous;
args.collective_executor = ce_handle ? ce_handle->get() : nullptr;
args.cancellation_manager = cancellation_manager;
args.stats_collector = collector;
args.step_container = step_container;
args.sync_on_finish = sync_on_finish_;
args.start_time_usecs = start_time_usecs;
if (LogMemory::IsEnabled()) {
LogMemory::RecordStep(args.step_id, handle);
}
thread::ThreadPool* pool = worker_env_->compute_pool;
using std::placeholders::_1;
// Line below is equivalent to this code, but does one less indirect call:
// args.runner = [pool](std::function<void()> fn) { pool->Schedule(fn); };
auto default_runner = std::bind(&thread::ThreadPool::Schedule, pool, _1);
for (const auto& unit : item->units) {
thread::ThreadPool* device_thread_pool =
unit.device->tensorflow_device_thread_pool();
if (!device_thread_pool) {
args.runner = default_runner;
} else {
args.runner =
std::bind(&thread::ThreadPool::Schedule, device_thread_pool, _1);
}
unit.root->RunAsync(args, barrier->Get());
}
}
3.4 小結
對於註冊/執行子圖,我們用一幅圖來小結一下。
圖 1 註冊/執行子圖
4. 總結
我們用一幅圖來把整個分散式計算流程總結如下:
圖 2 分散式計算流程