[原始碼解析] TensorFlow 分散式環境(6) --- Master 動態邏輯
在具體介紹 TensorFlow 分散式的各種 Strategy 之前,我們首先需要看看分散式的基礎:分散式環境。只有把基礎打紮實了,才能在以後的分析工作之中最大程度的掃清障礙,事半功倍。本文會從 Client 開始,看看 Master 如何對計算圖進行處理。
本文依舊深度借鑑了兩位大神:
- [TensorFlow Internals] (https://github.com/horance-liu/tensorflow-internals),雖然其分析的不是最新程式碼,但是建議對 TF 內部實現機制有興趣的朋友都去閱讀一下,絕對大有收穫。
- https://home.cnblogs.com/u/deep-learning-stacks/ 西門宇少,不僅僅是 TensorFlow,其公共號還有更多其他領域,業界前沿。
本系列其他文章是:
[翻譯] TensorFlow 分散式之論文篇 "Implementation of Control Flow in TensorFlow"
[原始碼解析] TensorFlow 分散式環境(1) --- 總體架構
[原始碼解析] TensorFlow 分散式環境(2)---Master 靜態邏輯
[原始碼解析] TensorFlow 分散式環境(3)--- Worker 靜態邏輯
[原始碼解析] TensorFlow 分散式環境(4) --- WorkerCache
[原始碼解析] TensorFlow 分散式環境(5) --- Session
1. GrpcSession
1.1 執行
首先,客戶會呼叫 GrpcSession 來開始執行,而 Run 方法會呼叫 RunHelper。
Status GrpcSession::Run(const RunOptions& run_options,
const std::vector<std::pair<string, Tensor>>& inputs,
const std::vector<string>& output_tensor_names,
const std::vector<string>& target_node_names,
std::vector<Tensor>* outputs,
RunMetadata* run_metadata) {
return RunHelper(run_options, inputs, output_tensor_names, target_node_names,
outputs, run_metadata, /* prun_handle */ "");
}
RunHelper 方法如下,這裡重要的是新增 feed 和 fetch,然後呼叫 RunProto 執行 session。
Status GrpcSession::RunHelper(
const RunOptions& run_options,
const std::vector<std::pair<string, Tensor>>& inputs,
const std::vector<string>& output_tensor_names,
const std::vector<string>& target_node_names, std::vector<Tensor>* outputs,
RunMetadata* run_metadata, const string& prun_handle) {
// Convert to proto
std::unique_ptr<MutableRunStepRequestWrapper> req(
master_->CreateRunStepRequest());
std::unique_ptr<MutableRunStepResponseWrapper> resp(
master_->CreateRunStepResponse());
*req->mutable_options() = run_options;
if (run_options.timeout_in_ms() == 0) {
req->mutable_options()->set_timeout_in_ms(
options_.config.operation_timeout_in_ms());
}
if (!prun_handle.empty()) {
req->set_partial_run_handle(prun_handle);
}
for (const auto& it : inputs) {
req->add_feed(it.first, it.second);
}
// Support long error messages by storing the error code in the response body.
req->set_store_errors_in_response_body(true);
// Build an index from fetch tensor name to first index in
// output_tensor_names.
std::unordered_map<string, int> output_name_to_offset;
for (int i = 0, end = output_tensor_names.size(); i < end; ++i) {
const string& name = output_tensor_names[i];
if (output_name_to_offset.insert(std::make_pair(name, i)).second) {
req->add_fetch(name);
}
}
for (const string& target : target_node_names) {
req->add_target(target);
}
CallOptions call_options;
call_options.SetTimeout(req->options().timeout_in_ms());
// 呼叫 RunProto 執行session
TF_RETURN_IF_ERROR(RunProto(&call_options, req.get(), resp.get()));
// Look for an extended error returned in the response body.
if (resp->status_code() != error::Code::OK) {
return resp->status();
}
if (!output_tensor_names.empty()) {
outputs->resize(output_tensor_names.size());
}
// Convert response back to Tensors in the correct order.
for (size_t i = 0; i < resp->num_tensors(); ++i) {
auto fetch_it = output_name_to_offset.find(resp->tensor_name(i));
if (fetch_it == output_name_to_offset.end()) {
return errors::Internal("Received response for unrequested fetch: ",
resp->tensor_name(i));
}
Tensor output;
TF_RETURN_IF_ERROR(resp->TensorValue(i, &output));
(*outputs)[fetch_it->second] = output;
}
// In the unlikely event that output_tensor_names contains duplicates, fill in
// the duplicate values.
if (output_name_to_offset.size() != output_tensor_names.size()) {
for (int i = 0, end = output_tensor_names.size(); i < end; ++i) {
const string& name = output_tensor_names[i];
int offset = output_name_to_offset[name];
if (offset != i) {
(*outputs)[i] = (*outputs)[offset];
}
}
}
if (run_metadata) {
run_metadata->Swap(resp->mutable_metadata());
}
return Status::OK();
}
最終 RunProto 還是呼叫到 master_->RunStep 完成業務功能。
Status GrpcSession::RunProto(CallOptions* call_options,
MutableRunStepRequestWrapper* req,
MutableRunStepResponseWrapper* resp) {
string handle;
TF_RETURN_IF_ERROR(Handle(&handle));
req->set_session_handle(handle);
return master_->RunStep(call_options, req, resp);
}
master_ 就是 GrpcRemoteMaster,所以我們接著看下去。
1.2 GrpcRemoteMaster
GrpcRemoteMaster 是位於 Client 的 gRPC 客戶端實現,它的 RunStep 方法只是通過 gRPC stub 來呼叫 遠端服務 MasterService 的 RunStep 介面,其實就是傳送一個 RunStepRequest 請求。
Status RunStep(CallOptions* call_options, RunStepRequestWrapper* request,
MutableRunStepResponseWrapper* response) override {
return CallWithRetry(call_options, &request->ToProto(),
get_proto_from_wrapper(response),
&MasterServiceStub::RunStep, "RunStep/Client");
}
於是,此時 Client 的邏輯擴充如下:
圖 1 Master 動態邏輯 1
2. Master
從現在開始,我們進入到了 Master 角色對應的伺服器。GrpcMasterService 執行的是 gRPC 服務,當收到 RunStepRequest 時候,系統會呼叫到 RunStepHandler。程式碼位於:tensorflow/core/distributed_runtime/rpc/grpc_master_service.cc。
// RPC handler for running one step in a session.
void RunStepHandler(MasterCall<RunStepRequest, RunStepResponse>* call) {
auto* trace = TraceRpc("RunStep/Server", call->client_metadata());
CallOptions* call_opts = new CallOptions;
if (call->request.options().timeout_in_ms() > 0) {
call_opts->SetTimeout(call->request.options().timeout_in_ms());
} else {
call_opts->SetTimeout(default_session_config_.operation_timeout_in_ms());
}
RunStepRequestWrapper* wrapped_request =
new ProtoRunStepRequest(&call->request);
MutableRunStepResponseWrapper* wrapped_response =
new NonOwnedProtoRunStepResponse(&call->response);
call->SetCancelCallback([call_opts]() { call_opts->StartCancel(); });
master_impl_->RunStep(
call_opts, wrapped_request, wrapped_response,
[call, call_opts, wrapped_request, trace](const Status& status) {
call->ClearCancelCallback();
delete call_opts;
delete wrapped_request;
delete trace;
if (call->request.store_errors_in_response_body() && !status.ok()) {
call->response.set_status_code(status.code());
call->response.set_status_error_message(status.error_message());
call->SendResponse(ToGrpcStatus(Status::OK()));
} else {
call->SendResponse(ToGrpcStatus(status));
}
});
ENQUEUE_REQUEST(RunStep, true);
}
master_impl_ 是 Master 例項,RunStep 會呼叫master session進行計算。
void Master::RunStep(CallOptions* opts, const RunStepRequestWrapper* req,
MutableRunStepResponseWrapper* resp, MyClosure done) {
// 獲取session
auto session = FindMasterSession(req->session_handle());
// 執行session
SchedClosure([this, start_time, session, opts, req, resp, done]() {
Status status = session->Run(opts, *req, resp);
});
}
現在我們正式進入到 Master 的業務邏輯,接下來就看看如何進一步處理。
2.1 總體概述
我們先來做一下總體概述。在 Master 上:
- 首先完成對 FullGraph 的剪枝,生成 ClientGraph。
- 然後,按照 Worker 維度將 ClientGraph 切分為多個 PartitionGraph。
- 最後,將 PartitionGraph 列表註冊給各個 Worker(這裡有一個 RPC 操作),並啟動各個 Worker 對 PartitionGraph 列表進行併發執行(這裡有一個 RPC 操作)。
結合程式碼來看如下。首先,Master 會呼叫 FindMasterSession 找到 session_handle 對應的 MasterSession,這之後,邏輯就由 MasterSession 來接管。
MasterSession* Master::FindMasterSession(const string& handle) {
MasterSession* session = nullptr;
{
mutex_lock l(mu_);
session = gtl::FindPtrOrNull(sessions_, handle);
if (session != nullptr) {
session->Ref();
}
}
return session;
}
其次,MasterSession::Run 有兩種呼叫可能,我們這裡選擇 DoRunWithLocalExecution 來分析。
Status MasterSession::Run(CallOptions* opts, const RunStepRequestWrapper& req,
MutableRunStepResponseWrapper* resp) {
UpdateLastAccessTime();
{
mutex_lock l(mu_);
if (closed_) {
return errors::FailedPrecondition("Session is closed.");
}
++num_running_;
// Note: all code paths must eventually call MarkRunCompletion()
// in order to appropriate decrement the num_running_ counter.
}
Status status;
if (!req.partial_run_handle().empty()) {
status = DoPartialRun(opts, req, resp);
} else {
status = DoRunWithLocalExecution(opts, req, resp);
}
return status;
}
DoRunWithLocalExecution 會做三個主要操作:
- StartStep 將呼叫 BuildGraph 來生成 ClientGraph,這裡會進行剪枝。
- BuildAndRegisterPartitions 將 計算圖按 location 不同切分為多個子圖。
- RunPartitions 執行子圖。這裡的一個子圖就對應一個 worker,就是對應一個 worker service。
Status MasterSession::DoRunWithLocalExecution(
CallOptions* opts, const RunStepRequestWrapper& req,
MutableRunStepResponseWrapper* resp) {
PerStepState pss;
pss.start_micros = Env::Default()->NowMicros();
auto cleanup = gtl::MakeCleanup([this] { MarkRunCompletion(); });
// Prepare.
BuildGraphOptions bgopts;
BuildBuildGraphOptions(req, session_opts_.config, &bgopts);
ReffedClientGraph* rcg = nullptr;
int64 count;
// StartStep 將呼叫 BuildGraph 來生成 ClientGraph,這裡會進行剪枝
TF_RETURN_IF_ERROR(StartStep(bgopts, false, &rcg, &count));
// Unref "rcg" when out of scope.
core::ScopedUnref unref(rcg);
// 對計算圖進行切分
TF_RETURN_IF_ERROR(BuildAndRegisterPartitions(rcg));
// Keeps the highest 8 bits 0x01: we reserve some bits of the
// step_id for future use.
uint64 step_id = NewStepId(rcg->collective_graph_key());
std::unique_ptr<ProfileHandler> ph;
FillPerStepState(rcg, req.options(), step_id, count, &pss, &ph);
if (pss.collect_partition_graphs &&
session_opts_.config.experimental().disable_output_partition_graphs()) {
return errors::InvalidArgument(
"RunOptions.output_partition_graphs() is not supported when "
"disable_output_partition_graphs is true.");
}
// 執行計算圖
Status s = rcg->RunPartitions(env_, step_id, count, &pss, opts, req, resp,
&cancellation_manager_, false);
cleanup.release(); // MarkRunCompletion called in PostRunCleanup().
return PostRunCleanup(rcg, step_id, req.options(), &pss, ph, s,
resp->mutable_metadata());
}
我們接下來對 DoRunWithLocalExecution 三個主要操作一一分析。
2.2 建立 & 剪枝
2.2.1 建立計算圖
StartStep 關鍵是建立計算圖並且做剪枝。
Status MasterSession::StartStep(const BuildGraphOptions& opts, bool is_partial,
ReffedClientGraph** out_rcg,
int64_t* out_count) {
const uint64 hash = HashBuildGraphOptions(opts);
{
mutex_lock l(mu_);
RCGMap* m = is_partial ? &partial_run_graphs_ : &run_graphs_;
auto iter = m->find(hash);
if (iter == m->end()) {
// We have not seen this subgraph before. Build the subgraph and
// cache it.
std::unique_ptr<ClientGraph> client_graph;
// 建立計算圖
TF_RETURN_IF_ERROR(execution_state_->BuildGraph(opts, &client_graph));
WorkerCacheInterface* worker_cache = get_worker_cache();
auto entry = new ReffedClientGraph(
handle_, opts, std::move(client_graph), session_opts_,
stats_publisher_factory_, is_partial, worker_cache,
!should_delete_worker_sessions_);
iter = m->insert({hash, entry}).first;
}
*out_rcg = iter->second;
(*out_rcg)->Ref();
*out_count = (*out_rcg)->get_and_increment_execution_count();
}
return Status::OK();
}
2.2.2 剪枝
BuildGraph 之中最關鍵的是呼叫 PruneGraph 進行剪枝。
Status GraphExecutionState::BuildGraph(const BuildGraphOptions& options,
std::unique_ptr<ClientGraph>* out) {
// Grappler optimization might change the structure of a graph itself, and
// also it can add/prune functions to/from the library.
std::unique_ptr<Graph> optimized_graph;
std::unique_ptr<FunctionLibraryDefinition> optimized_flib;
Status s = OptimizeGraph(options, *graph_, flib_def_.get(), &optimized_graph,
&optimized_flib);
if (!s.ok()) {
// Simply copy the original graph and the function library if we couldn't
// optimize it.
optimized_graph.reset(new Graph(flib_def_.get()));
CopyGraph(*graph_, optimized_graph.get());
optimized_flib.reset(new FunctionLibraryDefinition(*flib_def_));
}
subgraph::RewriteGraphMetadata rewrite_metadata;
if (session_options_ == nullptr ||
!session_options_->config.graph_options().place_pruned_graph()) {
TF_RETURN_IF_ERROR( // PruneGraph 會進行剪枝
PruneGraph(options, optimized_graph.get(), &rewrite_metadata));
} else {
// This GraphExecutionState represents a graph that was
// pruned when this was constructed, so we copy the metadata from
// a member variable.
CHECK(rewrite_metadata_);
rewrite_metadata = *rewrite_metadata_;
}
GraphOptimizationPassOptions optimization_options;
optimization_options.session_options = session_options_;
optimization_options.graph = &optimized_graph;
optimization_options.flib_def = optimized_flib.get();
optimization_options.device_set = device_set_;
TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping(
OptimizationPassRegistry::POST_REWRITE_FOR_EXEC, optimization_options));
int64_t collective_graph_key = options.collective_graph_key;
if (collective_graph_key == BuildGraphOptions::kNoCollectiveGraphKey) {
// BuildGraphOptions does not specify a collective_graph_key. Check all
// nodes in the Graph and FunctionLibraryDefinition for collective ops and
// if found, initialize a collective_graph_key as a hash of the ordered set
// of instance keys.
std::set<int32> instance_key_set;
bool has_collective_v2 = false;
for (Node* node : optimized_graph->nodes()) {
if (node->IsCollective()) {
int32_t instance_key;
TF_RETURN_IF_ERROR(
GetNodeAttr(node->attrs(), "instance_key", &instance_key));
instance_key_set.emplace(instance_key);
} else if (IsCollectiveV2(node->type_string())) {
has_collective_v2 = true;
} else {
const FunctionDef* fdef = optimized_flib->Find(node->def().op());
if (fdef != nullptr) {
for (const NodeDef& ndef : fdef->node_def()) {
if (ndef.op() == "CollectiveReduce" ||
ndef.op() == "CollectiveBcastSend" ||
ndef.op() == "CollectiveBcastRecv" ||
ndef.op() == "CollectiveGather") {
int32_t instance_key;
TF_RETURN_IF_ERROR(
GetNodeAttr(ndef, "instance_key", &instance_key));
instance_key_set.emplace(instance_key);
} else if (IsCollectiveV2(ndef.op())) {
has_collective_v2 = true;
}
}
}
}
}
if (!instance_key_set.empty()) {
uint64 hash = 0x8774aa605c729c72ULL;
for (int32_t instance_key : instance_key_set) {
hash = Hash64Combine(instance_key, hash);
}
collective_graph_key = hash;
} else if (has_collective_v2) {
collective_graph_key = 0x8774aa605c729c72ULL;
}
}
// Make collective execution order deterministic if needed.
if (options.collective_order != GraphCollectiveOrder::kNone) {
TF_RETURN_IF_ERROR(
OrderCollectives(optimized_graph.get(), options.collective_order));
}
// Copy the extracted graph in order to make its node ids dense,
// since the local CostModel used to record its stats is sized by
// the largest node id.
std::unique_ptr<ClientGraph> dense_copy(
new ClientGraph(std::move(optimized_flib), rewrite_metadata.feed_types,
rewrite_metadata.fetch_types, collective_graph_key));
CopyGraph(*optimized_graph, &dense_copy->graph);
metrics::UpdateGraphBuildTime(Env::Default()->NowMicros() - start_time_usecs);
*out = std::move(dense_copy);
return Status::OK();
}
2.3 切分註冊
2.2.1 原理
因為單個裝置的計算能力和儲存都不足,所以需要對大型模型進行模型分片,其本質就是把模型和相關計算進行切分之後分配到不同的裝置之上。
TensorFlow的 Placement 機制就是解決模型分片問題,其作用就是標明哪個 operation 放置在哪個裝置之上。Placement 這個名詞或者說機制最早應該是 Google Spanner 提出來的,其提供跨區資料遷移時管理功能,也有一定的負載均衡意義。TF 的 Placement 借鑑了 Google 的思想,其原則是:儘量滿足使用者需求;儘量使用計算更快的裝置;優先考慮近鄰性,避免拷貝;確保分配之後的程式可以執行。
Placement 機制完成之後,每個節點就擁有了Placement資訊,而 Partition 方法就可以根據這些節點的資訊對計算圖進行切分。
2.2.2 配置
BuildAndRegisterPartitions 之中會呼叫 RegisterPartitions 切分註冊,我們首先關注的是這裡如何配置切分。可以看到,其使用 SplitByWorker 做了切分標準。
Status MasterSession::BuildAndRegisterPartitions(ReffedClientGraph* rcg) {
// 為切分做配置
PartitionOptions popts;
popts.node_to_loc = SplitByWorker; // 被worker切分
popts.new_name = [this](const string& prefix) {
mutex_lock l(mu_);
return strings::StrCat(prefix, "_S", next_node_id_++);
};
popts.get_incarnation = [this](const string& name) -> int64 {
Device* d = devices_->FindDeviceByName(name);
if (d == nullptr) {
return PartitionOptions::kIllegalIncarnation;
} else {
return d->attributes().incarnation();
}
};
popts.control_flow_added = false; // 控制流
const bool enable_bfloat16_sendrecv =
session_opts_.config.graph_options().enable_bfloat16_sendrecv();
// 是否cast
popts.should_cast = [enable_bfloat16_sendrecv](const Edge* e) {
if (e->IsControlEdge()) {
return DT_FLOAT;
}
DataType dtype = BaseType(e->src()->output_type(e->src_output()));
if (enable_bfloat16_sendrecv && dtype == DT_FLOAT) {
return DT_BFLOAT16;
} else {
return dtype;
}
};
if (session_opts_.config.graph_options().enable_recv_scheduling()) {
popts.scheduling_for_recvs = true;
popts.need_to_record_start_times = true;
}
// 切分註冊子圖
TF_RETURN_IF_ERROR(rcg->RegisterPartitions(std::move(popts)));
return Status::OK();
}
SplitByWorker 方法如下。
static string SplitByWorker(const Node* node) {
string task;
string device;
CHECK(DeviceNameUtils::SplitDeviceName(node->assigned_device_name(), &task,
&device))
<< "node: " << node->name() << " dev: " << node->assigned_device_name();
return task;
}
BuildAndRegisterPartitions 然後呼叫了 RegisterPartitions,RegisterPartitions 會呼叫 DoBuildPartitions 進行分割槽,呼叫 DoRegisterPartitions 註冊分割槽。
Status MasterSession::ReffedClientGraph::RegisterPartitions(
PartitionOptions popts) {
{ // Ensure register once.
mu_.lock();
if (client_graph_before_register_) {
// The `ClientGraph` is no longer needed after partitions are registered.
// Since it can account for a large amount of memory, we consume it here,
// and it will be freed after concluding with registration.
std::unique_ptr<ClientGraph> client_graph;
std::swap(client_graph_before_register_, client_graph);
mu_.unlock();
std::unordered_map<string, GraphDef> graph_defs;
popts.flib_def = client_graph->flib_def.get();
// 進行分割槽
Status s = DoBuildPartitions(popts, client_graph.get(), &graph_defs);
if (s.ok()) {
// NOTE(mrry): The pointers in `graph_defs_for_publishing` do not remain
// valid after the call to DoRegisterPartitions begins, so
// `stats_publisher_` must make a copy if it wants to retain the
// GraphDef objects.
std::vector<const GraphDef*> graph_defs_for_publishing;
graph_defs_for_publishing.reserve(partitions_.size());
for (const auto& name_def : graph_defs) {
graph_defs_for_publishing.push_back(&name_def.second);
}
stats_publisher_->PublishGraphProto(graph_defs_for_publishing);
// 註冊分割槽
s = DoRegisterPartitions(popts, std::move(graph_defs));
}
mu_.lock();
init_result_ = s;
init_done_.Notify();
} else {
mu_.unlock();
init_done_.WaitForNotification();
mu_.lock();
}
const Status result = init_result_;
mu_.unlock();
return result;
}
}
2.2.3 切分
DoBuildPartitions 會呼叫 Partition 正式進入切分。
#include "tensorflow/core/graph/graph_partition.h"
Status MasterSession::ReffedClientGraph::DoBuildPartitions(
PartitionOptions popts, ClientGraph* client_graph,
std::unordered_map<string, GraphDef>* out_partitions) {
if (popts.need_to_record_start_times) {
CostModel cost_model(true);
cost_model.InitFromGraph(client_graph->graph);
// TODO(yuanbyu): Use the real cost model.
// execution_state_->MergeFromGlobal(&cost_model);
SlackAnalysis sa(&client_graph->graph, &cost_model);
sa.ComputeAsap(&popts.start_times);
}
// Partition the graph.
return Partition(popts, &client_graph->graph, out_partitions);
}
2.2.3.1 Partition
Partition 的主要邏輯如下:
- 切分原計算圖,產生多個子圖。
- 如果跨裝置的節點互相有依賴,則插入 Send 和 Recv 節點對。
- 如果需要,插入 Control Flow 邊。
具體來說是:
- 分析原計算圖。補齊控制流邊。
- 為控制流的分散式執行新增 "程式碼"。只為放在多個裝置上的框架(frames)新增程式碼。新圖是原圖的等價變換,並且具有這樣的特性:它可以隨後被任意分割(低至單個裝置的水平),以便分散式執行。
- 為每個 operator 的節點/邊構建 Memory/Device 資訊,也是為了切分做準備。
- TF 希望參與計算的張量被分配到裝置上,參與控制的張量被分配到 Host 之上,所以需要對每個 op 進行分析,確定其在 CPU 或者 GPU 上的版本,也需要確定其輸入和輸出張量的記憶體資訊,比如某些 op 雖然位於 GPU 之上但是依然需要從 CPU 讀取資料,又比如有些資料需要強制放到 CPU 之上因為其對 GPU 不友好。
- 遍歷圖的節點進行分析和切分,插入 Send/Recv 節點和控制邊,最終得到多個子圖。
- 從原圖取出一個節點 dst,拿到 dst 的 location 資訊,依據 location 資訊拿到其在 partitions 之中的GraphDef,新增 Node,設定裝置。
- 將 dst 在原來圖之中的輸入邊分析出來,連同控制邊一起,插入到 inputs 陣列之中。
- 取出 dst 的一個輸入邊,得到邊的 src 節點,得到 src 節點的圖。
- 如果 src/dst 在同一個圖之中,則說明是同樣分割槽和可以相容的記憶體型別,則在這個圖裡面把 src,dst 連線起來,遍歷到 dst 下一個邊。
- 如果 src/dst 不在同一個圖裡面,所以需要通訊,這樣就需要依據 edge, src 等資訊構建通訊 key,依據 key 在 cache 之中查詢 Recv 節點,如果找到了,就把 Recv 節點和 dst 節點連起來,遍歷到 dst 下一個邊。
- 如果存在控制邊,因為是跨裝置,需要把這種依賴關係跨裝置等價表示出來。所以雖然控制邊不真正傳輸張量,也需要發一個訊息給接受方,這樣接收方才知道有一個依賴關係。所以在src裝置上插入一個 dummy const node,在接收方插入一個 identity 節點來讀取這個 shape 是 0 的 dummy const,還需要把 identity 確定為接收方的控制依賴。
- 新增 Send 節點和 Recv 節點。
- 針對控制/資料關係做進一步修復。
- 對於同一裝置上的傳送/接收節點,它們之間是有資料拷貝操作的,所以新增一個從傳送到接收的控制邊。這樣可以防止非同步 recv kernel 在資料可用之前就被排程出去,從而保證了執行順序。
- 否則是跨裝置,需要根據資料流來重定向控制邊到真實的 recv 節點。
- 收尾工作,比如完善子圖的版本資訊,函式庫,和send/recv節點的 Incarnation
比如分割之後,如下:
圖 2 分割計算圖,來自 TensorFlow
插入 Send/Recv 節點之後如下:
圖 3 插入節點,來自 TensorFlow
Partition 程式碼具體如下,進行大幅精簡。
Status Partition(const PartitionOptions& opts, Graph* g,
std::unordered_map<string, GraphDef>* partitions) {
Status status;
partitions->clear();
GraphInfo g_info;
if (!opts.control_flow_added) {
// 分析原計算圖。補齊控制流邊。
// 為控制流的分散式執行新增 "程式碼"。只為放在多個裝置上的框架(frames)新增程式碼。新圖是原圖的等價變換,並且具有這樣的特性:它可以隨後被任意分割(低至單個裝置的水平),以便分散式執行。
status = AddControlFlow(opts, g, &g_info);
if (!status.ok()) return status;
}
// At this point, all the graph mutations have been done. Build memory
// and device type info for every node and edge in the graph.
// 為每個operator的節點/邊構建Memory/Device資訊,也是為了切分做準備。
// TF希望參與計算的張量被分配到裝置上,參與控制的張量被分配到Host之上,所以需要對每個op進行分析,確定其在CPU或者GPU上的版本,也需要確定其輸入和輸出張量的記憶體資訊,比如某些op雖然位於GPU之上但是依然需要從CPU讀取資料,而有些資料需要強制放到CPU之上因為其對GPU不友好。
status = BuildMemoryDeviceInfo(*g, &g_info);
if (!status.ok()) return status;
string dstp;
std::vector<const Edge*> inputs;
DupRecvTable dup_recv(3);
// 對於一個節點dst,'ref_recvs'是由ref邊引入到dst的recvs。ref_control_inputs'是由非ref到dst的輸入。
// 對於(ref_recvs x ref_control_inputs)之中每一個pair,我們增加一個控制邊
std::vector<NodeDef*> ref_recvs;
std::vector<string> ref_control_inputs;
int32_t num_data = 0;
int32_t num_control = 0;
for (const Node* dst : g->op_nodes()) { // 遍歷圖的節點進行分析和切分,插入Send/Recv節點和控制邊
// 從原圖取出一個節點dst
dstp = opts.node_to_loc(dst); // 拿到dst的location資訊
GraphDef* dst_graph = &(*partitions)[dstp]; // 依據location資訊拿到其在partitions之中的GraphDef
NodeDef* dst_def = dst_graph->add_node(); // 新增Node
*dst_def = dst->def();
dst_def->set_device(dst->assigned_device_name()); // 設定裝置
dst_def->clear_input(); // Inputs are filled below
// Arrange the incoming edges to dst so that input[i] holds the
// input flowing into slot numbered i. Trailing entries in input[]
// hold control edges.
// 將dst在原來圖之中的輸入邊分析出來,連同控制邊一起,插入到inputs陣列之中。
inputs.clear();
inputs.resize(dst->num_inputs(), nullptr);
ref_recvs.clear();
ref_control_inputs.clear();
const Edge* control_flow_edge = nullptr;
int32_t num_control_flow_edges = 0;
int32_t num_input_edges = 0;
for (const Edge* edge : dst->in_edges()) {
if (edge->IsControlEdge()) {
if (IsMerge(edge->src()) && IsControlLoop(edge->src())) {
// This is one of the control edges added for control flow. There
// can be multiple such edges as the dest node may have multiple
// remote inputs. We keep track of the number of such edges.
control_flow_edge = edge;
++num_control_flow_edges;
} else {
inputs.push_back(edge);
}
} else {
DCHECK(inputs[edge->dst_input()] == nullptr);
inputs[edge->dst_input()] = edge;
++num_input_edges;
}
}
// Process in order so that all data edges are added as inputs to
// dst in Edge::dst_input() order.
for (const Edge* edge : inputs) { // 取出dst的一個邊
const Node* src = edge->src(); // 得到邊的src節點
if (!src->IsOp()) continue; // Skip Sink/Source nodes.
GraphDef* src_graph = &(*partitions)[opts.node_to_loc(src)]; // 呼叫配置的 SplitByWorker 或者 SplitByDevice 進行分割槽,得到src節點的圖
if (src_graph == dst_graph && !NeedSameDeviceSendRecv(edge, g_info)) {
// 在同一個圖之中,則說明是同樣分割槽和可以相容的記憶體型別,則在這個圖裡面把src,dst連線起來
// Same partition and compatible memory types:
AddInput(dst_def, src->name(), edge->src_output());
if (edge->IsControlEdge() ||
!IsRefType(src->output_type(edge->src_output()))) {
ref_control_inputs.push_back(src->name());
}
continue; // 遍歷到dst下一個邊
}
// Check whether there is already a send/recv pair transferring
// the same tensor/control from the src to dst partition.
const bool on_host = IsDstInputOnHost(edge, g_info);
// 因為不在同一個圖裡面,所以需要通訊,這樣就需要依據edge, src等資訊構建通訊key
DupRecvKey key{src->id(), edge->src_output(), dst_graph, on_host};
auto iter = dup_recv.find(key); // 依據key在cache之中查詢Recv節點
if (iter != dup_recv.end()) { // 如果找到了,就把Recv節點和dst節點連起來
// We found one. Reuse the data/control transferred already.
const string& recv_node_name = iter->second.recv->name();
if (edge->IsControlEdge()) {
AddInput(dst_def, recv_node_name, Graph::kControlSlot);
} else {
AddInput(dst_def, recv_node_name, 0);
}
ref_control_inputs.push_back(recv_node_name);
continue; // 遍歷到dst下一個邊
}
// 新增Send節點和Recv節點
NodeDefBuilder::NodeOut send_from; // 設定傳送節點資訊
if (edge->IsControlEdge()) {
// Insert a dummy const node that will generate a tiny
// data element to be sent from send to recv.
// 如果存在控制邊,因為是跨裝置,需要把這種依賴關係跨裝置等價表示出來。
// 所以雖然控制邊不真正傳輸張量,也需要發一個訊息給接受方,這樣接收方才知道有一個依賴關係。所以在src裝置上插入一個dummy const node,在接收方插入一個identity節點來讀取這個shape是0的dummy const,還需要把identity確定為接收方的控制依賴
NodeDef* dummy = AddDummyConst(opts, src_graph, edge, &status);
if (!status.ok()) return status;
AddInput(dummy, src->name(), Graph::kControlSlot);
send_from.Reset(dummy->name(), 0, DT_FLOAT);
} else {
send_from.Reset(src->name(), edge->src_output(), EdgeType(edge));
}
// Need to split edge by placing matching send/recv nodes on
// the src/dst sides of the edge.
NodeDef* send = AddSend(opts, g_info, src_graph, edge, send_from,
send_start_time, &status);
if (!status.ok()) return status;
NodeDef* real_recv = nullptr;
NodeDef* recv =
AddRecv(opts, g_info, dst_graph, edge, &real_recv, &status);
if (!status.ok()) return status;
if (src_graph == dst_graph) {
// For same device send/recv, add a control edge from send to recv.
// This prevents the asynchronous recv kernel from being scheduled
// before the data is available.
// 對於同一裝置上的傳送/接收節點,它們之間是有資料拷貝操作的,所以新增一個從傳送到接收的控制邊。這樣可以防止非同步recv kernel在資料可用之前就被排程出去,從而保證了執行順序。
AddInput(real_recv, send->name(), Graph::kControlSlot);
} else if (control_flow_edge != nullptr) {
// Redirect control edge to the real recv since this is not the same
// device send/recv.
// 否則是跨裝置,需要根據資料流來重定向控制邊到真實的recv節點
--num_control_flow_edges;
AddInput(real_recv, control_flow_edge->src()->name(),
Graph::kControlSlot);
}
if (!edge->IsControlEdge() &&
IsRefType(src->output_type(edge->src_output()))) {
// If src is of ref type and the edge is not a control edge, dst has
// read semantics and therefore we must control the recv.
ref_recvs.push_back(real_recv);
} else {
// Memorize the send/recv pair, only if this is not a "ref" edge.
// NOTE(yuanbyu): Collapsing ref edges requires extreme care so
// for now we don't do it.
dup_recv[key] = {recv, real_recv, recv_start_time};
ref_control_inputs.push_back(recv->name());
}
if (edge->IsControlEdge()) {
++num_control;
AddInput(dst_def, recv->name(), Graph::kControlSlot);
} else {
++num_data;
AddInput(dst_def, recv->name(), 0);
}
}
// Add control edges from 'ref_control_inputs' to 'ref_recvs'.
// NOTE(yuanbyu): Adding these control edges should not introduce
// deadlocks. 'dst' has implicit "read" nodes that, when we split
// across devices, are made explicit; Retargeting the dependencies
// to 'dst' to those nodes would not introduce cycles if there isn't
// one before the transformation.
// NOTE(yuanbyu): This may impact performance because it defers the
// execution of recvs until all the other inputs become available.
AddReadControl(ref_recvs, ref_control_inputs);
// Add back the control edges for control flow that are not used.
if (control_flow_edge != nullptr) {
for (int i = 0; i < num_control_flow_edges; ++i) {
AddInput(dst_def, control_flow_edge->src()->name(),
Graph::kControlSlot);
}
}
}
// 收尾工作,比如完善子圖的版本資訊,函式庫,和send/recv節點的Incarnation
const FunctionLibraryDefinition* flib_def = opts.flib_def;
if (flib_def == nullptr) {
flib_def = &g->flib_def();
}
// Set versions, function library and send/recv incarnation.
for (auto& it : *partitions) {
GraphDef* gdef = &it.second;
*gdef->mutable_versions() = g->versions();
// Prune unreachable functions from `flib_def` before adding them to `gdef`.
*gdef->mutable_library() = flib_def->ReachableDefinitions(*gdef).ToProto();
// Traverse the graph to fill every send/recv op's incarnation
// information.
SetIncarnation(opts, gdef);
}
return Status::OK();
}
Partition 用到的部分函式具體如下。
2.2.3.2 AddDummyConst
如果存在控制邊,因為是跨裝置,需要把這種依賴關係跨裝置等價表示出來。所以雖然控制邊不真正傳輸張量,也需要發一個訊息給接受方,這樣接收方才知道有一個依賴關係。
所以在src裝置上插入一個 dummy const node 用來表達這種對下游的控制依賴關係,在接收方插入一個 identity節點來讀取這個 shape 是 0 的 dummy const,還需要把identity確定為接收方的控制依賴。這樣,dummy const node 是生產者,Identity 是消費者角色。就滿足了跨裝置間的通訊需求。
NodeDef* AddDummyConst(const PartitionOptions& opts, GraphDef* gdef,
const Edge* edge, Status* status) {
const Node* src = edge->src();
Tensor tensor(DT_FLOAT, TensorShape({0}));
NodeDef* result = gdef->add_node();
*status = NodeDefBuilder(opts.new_name(src->name()), "Const")
.Device(src->assigned_device_name())
.Attr("dtype", DT_FLOAT)
.Attr("value", tensor)
.Finalize(result, /*consume=*/true);
return result;
}
2.2.3.3 AddSend
如果 src 和 dst 分別屬於兩個 Partition,則需要把原來兩者之間的普通邊切分開,在它們中間增加 Send 與 Recv 節點,這樣就可以將其劃歸在兩個不同 Partition 之內。
NodeDef* AddSend(const PartitionOptions& opts, const GraphInfo& g_info,
GraphDef* gdef, const Edge* edge,
NodeDefBuilder::NodeOut send_from, int64_t start_time,
Status* status) {
const DataType dtype = send_from.data_type;
const DataType cast_dtype = opts.should_cast ? opts.should_cast(edge) : dtype;
const Node* src = edge->src();
const int src_port = edge->src_output();
// host_memory = true iff we need to use HostSend/HostCast.
bool host_memory = false;
if (!edge->IsControlEdge()) {
auto src_it = g_info.output_types.find({src->id(), src_port});
host_memory = (src_it->second == HOST_MEMORY);
}
// Add a cast node that casts dtype to cast_dtype.
// NOTE(yuanbyu): Only cast for cross-device send/recv.
if (dtype != cast_dtype && !NeedSameDeviceSendRecv(edge, g_info)) {
const string cast_op = (host_memory) ? "_HostCast" : "Cast";
NodeDefBuilder cast_builder(opts.new_name(src->name()), cast_op,
NodeDebugInfo(*src));
cast_builder.Device(src->assigned_device_name()).Input(send_from);
cast_builder.Attr("DstT", cast_dtype);
if (cast_dtype == DT_BFLOAT16) {
// the below attribute specifies that the cast to bfloat16 should use
// truncation. This is needed to retain legacy behavior when we change
// the default bfloat16 casts to use rounding instead of truncation
cast_builder.Attr("Truncate", true);
}
NodeDef* cast = gdef->add_node();
*status = cast_builder.Finalize(cast, /*consume=*/true);
if (!status->ok()) return nullptr;
// Connect the Send op to the cast.
send_from.Reset(cast->name(), 0, cast_dtype);
}
// Add the send node.
const string send_op = (host_memory) ? "_HostSend" : "_Send";
NodeDefBuilder send_builder(opts.new_name(src->name()), send_op,
NodeDebugInfo(*src));
SetSendRecvAttrs(opts, edge, &send_builder);
send_builder.Device(src->assigned_device_name()).Input(send_from);
NodeDef* send = gdef->add_node();
*status = send_builder.Finalize(send, /*consume=*/true);
return send;
}
2.2.3.4 AddRecv
前面提到的在接收方插入一個 identity 節點來讀取這個 shape 是 0 的 dummy const,還需要把 identity 確定為接收方的控制依賴,這部分程式碼在此實現。Identity 是恆等變化,可以直接輸出張量,這樣既去除了變數的引用標識,也避免了記憶體拷貝。
NodeDef* AddRecv(const PartitionOptions& opts, const GraphInfo& g_info,
GraphDef* gdef, const Edge* edge, NodeDef** real_recv,
Status* status) {
const DataType dtype = EdgeType(edge);
const Node* src = edge->src();
const Node* dst = edge->dst();
const int dst_port = edge->dst_input();
DataType cast_dtype = dtype;
// NOTE(yuanbyu): Only cast for cross-device send/recv.
if (opts.should_cast && !NeedSameDeviceSendRecv(edge, g_info)) {
cast_dtype = opts.should_cast(edge);
}
// host_memory = true iff we need to use HostRecv/HostCast.
// Also log the introduction of the send-recv pair, for performance debugging.
bool host_memory = false;
if (!edge->IsControlEdge()) {
auto dst_it = g_info.input_types.find({dst->id(), dst_port});
DCHECK(dst_it != g_info.input_types.end());
host_memory = (dst_it->second == HOST_MEMORY);
bool src_host_memory = false;
} else {
// Log control-edge transfers too, but don't mention memory space since it's
// irrelevant.
// 省略log
}
// Add the recv node.
const string recv_op = (host_memory) ? "_HostRecv" : "_Recv";
NodeDefBuilder recv_builder(opts.new_name(src->name()), recv_op,
NodeDebugInfo(*src));
SetSendRecvAttrs(opts, edge, &recv_builder);
recv_builder.Device(dst->assigned_device_name())
.Attr("tensor_type", cast_dtype);
NodeDef* recv = gdef->add_node();
*status = recv_builder.Finalize(recv, /*consume=*/true);
if (!status->ok()) return nullptr;
*real_recv = recv;
// Add the cast node (from cast_dtype to dtype) or an Identity node.
if (dtype != cast_dtype) {
const string cast_op = (host_memory) ? "_HostCast" : "Cast";
NodeDefBuilder cast_builder(opts.new_name(src->name()), cast_op,
NodeDebugInfo(*src));
cast_builder.Attr("DstT", dtype);
cast_builder.Device(dst->assigned_device_name())
.Input(recv->name(), 0, cast_dtype);
NodeDef* cast = gdef->add_node();
*status = cast_builder.Finalize(cast, /*consume=*/true);
if (!status->ok()) return nullptr;
return cast;
} else if (edge->IsControlEdge()) {
// An Identity is only needed for control edges.
// 這裡加入了"Identity"。
NodeDefBuilder id_builder(opts.new_name(src->name()), "Identity",
NodeDebugInfo(*src));
id_builder.Device(dst->assigned_device_name())
.Input(recv->name(), 0, cast_dtype);
NodeDef* id = gdef->add_node();
*status = id_builder.Finalize(id, /*consume=*/true);
if (!status->ok()) return nullptr;
return id;
} else {
return recv;
}
}
2.2.3.5 AddInput
AddInput 為下游節點增加輸入。
// Add an input to dst that comes from the "src_slot" output of the
// node named by "src_name".
void AddInput(NodeDef* dst, StringPiece src_name, int src_slot) {
if (src_slot == Graph::kControlSlot) {
dst->add_input(strings::StrCat("^", src_name));
} else if (src_slot == 0) {
dst->add_input(src_name.data(), src_name.size());
} else {
dst->add_input(strings::StrCat(src_name, ":", src_slot));
}
}
2.2.3.6 AddReadControl
AddReadControl 其實是通過 add_input 完成控制。
// Add a control edge from each input to each recv.
void AddReadControl(const std::vector<NodeDef*>& recvs,
const std::vector<string>& inputs) {
for (NodeDef* recv : recvs) {
for (const string& input : inputs) {
recv->add_input(strings::StrCat("^", input));
}
}
}
2.2.4 註冊
現在分割槽完畢,我們來到了註冊階段。
2.2.4.1 DoRegisterPartitions
DoRegisterPartitions 會設定哪個 worker 負責哪個分割槽,關鍵程式碼是:
-
呼叫 part->worker = worker_cache_->GetOrCreateWorker(part->name) 來設定每個 part 的 worker。
-
呼叫 part.worker->RegisterGraphAsync(&c->req, &c->resp, cb) 來註冊圖。
Status MasterSession::ReffedClientGraph::DoRegisterPartitions(
const PartitionOptions& popts,
std::unordered_map<string, GraphDef> graph_partitions) {
partitions_.reserve(graph_partitions.size());
Status s;
for (auto& name_def : graph_partitions) {
partitions_.emplace_back();
Part* part = &partitions_.back();
part->name = name_def.first;
TrackFeedsAndFetches(part, name_def.second, popts);
part->worker = worker_cache_->GetOrCreateWorker(part->name);
if (part->worker == nullptr) {
s = errors::NotFound("worker ", part->name);
break;
}
}
if (!s.ok()) {
for (Part& part : partitions_) {
worker_cache_->ReleaseWorker(part.name, part.worker);
part.worker = nullptr;
}
return s;
}
struct Call {
RegisterGraphRequest req;
RegisterGraphResponse resp;
Status status;
};
const int num = partitions_.size();
gtl::InlinedVector<Call, 4> calls(num);
BlockingCounter done(num);
for (int i = 0; i < num; ++i) {
const Part& part = partitions_[i];
Call* c = &calls[i];
c->req.set_session_handle(session_handle_);
c->req.set_create_worker_session_called(!should_deregister_);
c->req.mutable_graph_def()->Swap(&graph_partitions[part.name]);
StripDefaultAttributes(*OpRegistry::Global(),
c->req.mutable_graph_def()->mutable_node());
*c->req.mutable_config_proto() = session_opts_.config;
*c->req.mutable_graph_options() = session_opts_.config.graph_options();
*c->req.mutable_debug_options() =
callable_opts_.run_options().debug_options();
c->req.set_collective_graph_key(collective_graph_key_);
auto cb = [c, &done](const Status& s) {
c->status = s;
done.DecrementCount();
};
part.worker->RegisterGraphAsync(&c->req, &c->resp, cb);
}
done.Wait();
for (int i = 0; i < num; ++i) {
Call* c = &calls[i];
s.Update(c->status);
partitions_[i].graph_handle = c->resp.graph_handle();
}
return s;
}
2.2.4.2 GrpcRemoteWorker
上面的 part.worker->RegisterGraphAsync 會呼叫到 GrpcRemoteWorker,最終傳送 RegisterGraphRequest 給下游 Worker。
tensorflow/core/distributed_runtime/rpc/grpc_remote_worker.cc 之中,RegisterGraphAsync 會呼叫 rpc。
void RegisterGraphAsync(const RegisterGraphRequest* request,
RegisterGraphResponse* response,
StatusCallback done) override {
IssueRequest(request, response, registergraph_, std::move(done));
}
注意是,除非計算圖節點被重新編排,或者 Master 程式被重啟,否則Master 只會執行一次 RegisterGraph。概念上具體示意如下:
圖 4 註冊圖,來自 TensorFlow
2.4 執行計算圖
既然已經分割槽結束,也註冊到了遠端 Worker 之上,每個worker都擁有自己的子圖,接下來就是執行子圖。
Master 通過呼叫 RunGraph 來在 Worker 之上觸發子圖運算,Worker 會使用 GPU/CPU 運算裝置執行TensorFlow Kernel 運算。在 Worker/裝置之間會依據情況不同採用不同傳輸方式:
- 本節點 GPU 和 CPU 之間採用 cudaMemcpyAsync。
- 本節點 GPU 和 GPU 之間採用 peer-to-peer DMA。
- 在 Worker 之間採用 gRPC(TCP) 和 RDMA (Converged Ethernet)。
圖 5 執行子圖
2.4.1 RunPartitions
RunPartitions 呼叫了 RunPartitionsHelper 執行subgraph。
Status MasterSession::ReffedClientGraph::RunPartitions(
const MasterEnv* env, int64_t step_id, int64_t execution_count,
PerStepState* pss, CallOptions* call_opts, const RunCallableRequest& req,
RunCallableResponse* resp, CancellationManager* cm) {
// Maps the names of fed tensors to their index in `req`.
std::unordered_map<StringPiece, size_t, StringPieceHasher> feeds(3);
for (size_t i = 0, end = callable_opts_.feed_size(); i < end; ++i) {
if (!feeds.insert({callable_opts_.feed(i), i}).second) {
// MakeCallable will fail if there are two feeds with the same name.
return errors::Internal("Duplicated feeds in callable: ",
callable_opts_.feed(i));
}
}
// Create a wrapped response object to collect the fetched values and
// rearrange them for the RunCallableResponse.
RunCallableResponseWrapper wrapped_resp;
wrapped_resp.resp = resp;
// 在這裡呼叫執行
TF_RETURN_IF_ERROR(RunPartitionsHelper(
feeds, callable_opts_.fetch(), env, step_id, execution_count, pss,
call_opts, req, &wrapped_resp, cm, false /* is_last_partial_run */));
// Collects fetches.
for (const string& fetch : callable_opts_.fetch()) {
TensorProto* fetch_proto = resp->mutable_fetch()->Add();
auto iter = wrapped_resp.fetch_key_to_protos.find(fetch);
if (iter == wrapped_resp.fetch_key_to_protos.end()) {
return errors::Internal("Worker did not return a value for fetch: ",
fetch);
}
fetch_proto->Swap(&iter->second);
}
return Status::OK();
}
2.4.2 RunPartitionsHelper
RunPartitionsHelper執行子圖,具體邏輯是:
- 為每一個分割槽配置一個 RunManyGraphs::Call,給這個 call 配置 request,response,session handle,graph handle,request id,配置 recv key。
- 每個 worker 傳送 RunGraphAsync。
- 一個子圖分配給一個 worker,對應一個 worker service。
- part.worker 是每個分割槽對應的 WorkerInterface 物件,如果在遠端是 GrpcRemoteWorker 例項,否則是 Worker 例項。
- 註冊各種 callback,等待 RunGraphAsync 執行結果。
- 處理執行結果。
template <class FetchListType, class ClientRequestType,
class ClientResponseType>
Status MasterSession::ReffedClientGraph::RunPartitionsHelper(
const std::unordered_map<StringPiece, size_t, StringPieceHasher>& feeds,
const FetchListType& fetches, const MasterEnv* env, int64_t step_id,
int64_t execution_count, PerStepState* pss, CallOptions* call_opts,
const ClientRequestType& req, ClientResponseType* resp,
CancellationManager* cm, bool is_last_partial_run) {
// Collect execution cost stats on a smoothly decreasing frequency.
ExecutorOpts exec_opts;
// 省略統計程式碼
const int num = partitions_.size();
RunManyGraphs calls(num);
for (int i = 0; i < num; ++i) {
// 為每一個分割槽配置一個RunManyGraphs::Call
const Part& part = partitions_[i];
RunManyGraphs::Call* c = calls.get(i);
c->worker_name = &part.name;
c->req.reset(part.worker->CreateRunGraphRequest()); // 配置request
c->resp.reset(part.worker->CreateRunGraphResponse()); // 配置response
if (is_partial_) {
c->req->set_is_partial(is_partial_);
c->req->set_is_last_partial_run(is_last_partial_run);
}
c->req->set_session_handle(session_handle_); // 配置session handle
c->req->set_create_worker_session_called(!should_deregister_);
c->req->set_graph_handle(part.graph_handle); // 配置graph handle
c->req->set_step_id(step_id);
*c->req->mutable_exec_opts() = exec_opts;
c->req->set_store_errors_in_response_body(true);
c->req->set_request_id(GetUniqueRequestId()); // 配置request id
// If any feeds are provided, send the feed values together
// in the RunGraph request.
// In the partial case, we only want to include feeds provided in the req.
// In the non-partial case, all feeds in the request are in the part.
// We keep these as separate paths for now, to ensure we aren't
// inadvertently slowing down the normal run path.
if (is_partial_) {
for (const auto& name_index : feeds) {
const auto iter = part.feed_key.find(string(name_index.first));
if (iter == part.feed_key.end()) {
// The provided feed must be for a different partition.
continue;
}
const string& key = iter->second;
TF_RETURN_IF_ERROR(AddSendFromClientRequest(req, c->req.get(),
name_index.second, key));
}
// TODO(suharshs): Make a map from feed to fetch_key to make this faster.
// For now, we just iterate through partitions to find the matching key.
for (const string& req_fetch : fetches) {
for (const auto& key_fetch : part.key_fetch) {
if (key_fetch.second == req_fetch) {
c->req->add_recv_key(key_fetch.first); // 配置 recv key
break;
}
}
}
} else {
for (const auto& feed_key : part.feed_key) {
const string& feed = feed_key.first;
const string& key = feed_key.second;
auto iter = feeds.find(feed);
if (iter == feeds.end()) {
return errors::Internal("No feed index found for feed: ", feed);
}
const int64_t feed_index = iter->second;
TF_RETURN_IF_ERROR(
AddSendFromClientRequest(req, c->req.get(), feed_index, key));
}
for (const auto& key_fetch : part.key_fetch) {
const string& key = key_fetch.first;
c->req->add_recv_key(key); // 配置 recv key
}
}
}
// Issues RunGraph calls.
for (int i = 0; i < num; ++i) {
const Part& part = partitions_[i];
RunManyGraphs::Call* call = calls.get(i);
part.worker->RunGraphAsync( // 每個 worker 傳送 RunGraphAsync
&call->opts, call->req.get(), call->resp.get(),
std::bind(&RunManyGraphs::WhenDone, &calls, i, std::placeholders::_1));
}
// Waits for the RunGraph calls.
// 註冊各種callback,等待執行結果
call_opts->SetCancelCallback([&calls]() {
calls.StartCancel();
});
auto token = cm->get_cancellation_token();
const bool success =
cm->RegisterCallback(token, [&calls]() { calls.StartCancel(); });
if (!success) {
calls.StartCancel();
}
calls.Wait();
call_opts->ClearCancelCallback();
if (success) {
cm->DeregisterCallback(token);
} else {
return errors::Cancelled("Step was cancelled");
}
// Collects fetches and metadata.
// 處理執行結果
Status status;
for (int i = 0; i < num; ++i) {
const Part& part = partitions_[i];
MutableRunGraphResponseWrapper* run_graph_resp = calls.get(i)->resp.get();
for (size_t j = 0; j < run_graph_resp->num_recvs(); ++j) {
auto iter = part.key_fetch.find(run_graph_resp->recv_key(j));
if (iter == part.key_fetch.end()) {
status.Update(errors::Internal("Unexpected fetch key: ",
run_graph_resp->recv_key(j)));
break;
}
const string& fetch = iter->second;
status.Update(
resp->AddTensorFromRunGraphResponse(fetch, run_graph_resp, j));
if (!status.ok()) {
break;
}
}
if (pss->collect_timeline) {
pss->step_stats[i].Swap(run_graph_resp->mutable_step_stats());
}
if (pss->collect_costs) {
CostGraphDef* cost_graph = run_graph_resp->mutable_cost_graph();
for (int j = 0; j < cost_graph->node_size(); ++j) {
resp->mutable_metadata()->mutable_cost_graph()->add_node()->Swap(
cost_graph->mutable_node(j));
}
}
if (pss->collect_partition_graphs) {
protobuf::RepeatedPtrField<GraphDef>* partition_graph_defs =
resp->mutable_metadata()->mutable_partition_graphs();
for (size_t i = 0; i < run_graph_resp->num_partition_graphs(); i++) {
partition_graph_defs->Add()->Swap(
run_graph_resp->mutable_partition_graph(i));
}
}
}
return status;
}
2.4.3 GrpcRemoteWorker
上面呼叫到了如下程式碼通知遠端 Worker 執行子圖。
part.worker->RunGraphAsync(
&call->opts, call->req.get(), call->resp.get(),
std::bind(&RunManyGraphs::WhenDone, &calls, i, std::placeholders::_1));
RunGraphAsync 具體定義就是 GrpcRemoteWorker 之中。GrpcRemoteWorker 的每個函式呼叫 IssueRequest() 發起一個非同步 gRPC 呼叫。
void RunGraphAsync(CallOptions* call_opts, const RunGraphRequest* request,
RunGraphResponse* response, StatusCallback done) override {
IssueRequest(request, response, rungraph_, std::move(done), call_opts);
}
遠端執行的 GrpcWorkerService 作為守護程式,將會處理傳入的 gRPC 請求。
我們總結 DoRunWithLocalExecution 總體邏輯如下:
圖 6 DoRunWithLocalExecution 總體邏輯
2.5 小結
執行邏輯小結如下,注意這裡有兩個grpc 呼叫,一個是 register,一個是 run。首先呼叫 register 把子圖註冊到遠端 Worker 之上,其次呼叫 run 來讓遠端 Worker 完成子圖計算。
圖 7 Master 動態邏輯 2
我們馬上會去 Worker 來一探究竟。
0xFF 參考
[1]. Abadi M, Agarwal A, Barham P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems[J]. arXiv preprint arXiv:1603.04467, 2016.
[2] TensorFlow的圖切割模組——Graph Partitioner