import numpy as np
import scipy
from matplotlib import pyplot as plt
def pdf(x):
if 0 <= x < 0.25:
return 8 * x
elif 0.25 <= x < 1:
return 8 / 3 - 8 / 3 * x
else:
return 0
def cdf(x):
if x < 0:
return 0
elif 0 <= x < 0.25:
return 4 * x * x
elif 0.25 <= x < 1:
return 8 / 3 * x - 4 / 3 * x * x - 1 / 3
else:
return 1
def cdf_reverse(x):
if x < 0 or x > 1:
return None
elif 0 <= x < 0.25:
return x ** 0.5 / 2
else:
return 1 - (3 * (1 - x)) ** 0.5 / 2
# 逆CDF取樣
def reverse_sample():
#########################################################
# p()是目標分佈PDF
# F^-1()是目標分佈CDF的反函式
# u()是0-1均勻分佈
# 演算法:
# 從u()中隨機抽取u
# 返回F^-1(u)
#########################################################
u = np.random.uniform(0, 1)
return cdf_reverse(u)
# 接受拒絕取樣
def reject_sample():
#########################################################
# p()是目標分佈
# q()取0-1均勻分佈 並且使得kq()要覆蓋p()
# u()是0-1均勻分佈
# 演算法:
# 從q()中隨機抽取x0,從u()隨機抽取u
# 如果 u <= p(x0) / kq(x0),則接受x0,反之則拒絕
#########################################################
x = np.random.uniform(0, 1)
k = 2
u = np.random.uniform(0, 1)
if u <= pdf(x) / k:
return x
else:
return None
# MCMC MH演算法
def mcmc_sample(x):
#########################################################
# p()是目標分佈
# q()隨機選擇一個分佈,選擇正態分佈
# u()是0-1均勻分佈
# 演算法:
# 初始化x,並從q()隨機抽取x_star
# 計算alpha=min(1, p(j)*q(j,i) / p(i)q(i,j))
# 從u()隨機抽取u
# 如果 u < alpha,則x = x_star,反之則x = x
#########################################################
x_star = np.random.normal(x, 1)
num = pdf(x_star) * scipy.stats.norm(x_star, 1).pdf(x)
den = pdf(x) * scipy.stats.norm(x, 1).pdf(x_star)
alpha = min(1, num / den)
u = np.random.uniform(0, 1)
if u < alpha:
return x_star
else:
return x
def plot(x, y, samples):
plt.hist(samples, color="green", density=True)
plt.plot(x, y, color="red")
plt.show()
def mean(samples):
return np.mean(samples)
def get_reverse_sample():
# 隨機取樣10000次
samples = []
for _ in range(10000):
val = reverse_sample()
if val:
samples.append(val)
return samples
def get_reject_sample():
# 隨機取樣10000次
samples = []
for _ in range(10000):
val = reject_sample()
if val:
samples.append(val)
return samples
def get_mcmc_sample():
# 隨機取樣10000次
samples = []
x = 0.1
for _ in range(10000):
x = mcmc_sample(x)
samples.append(x)
return samples[1000:]
def main():
x = np.arange(0, 1, 0.01)
y = [pdf(i) for i in x]
samples = get_mcmc_sample()
plot(x, y, samples)
# 理論均值 = 33/72 - 1/24
print("理論均值:", 33 / 72 - 1 / 24)
print("取樣均值:", mean(samples))
if __name__ == '__main__':
main()