使用SiliconCloud嘗試GraphRag——以《三國演義》為例(手把手教程,適合小白)

mingupupup發表於2024-08-10

使用OpenAI模型體驗GraphRag——以《邊城》為例

在使用SiliconCloud之前,先使用OpenAI的模型看看GraphRag的效果。

GraphRAG是一種基於AI的內容理解和搜尋能力,利用LLMs,解析資料以建立知識圖譜,並對使用者提供的私有資料集回答使用者問題的方法。

GitHub地址:https://github.com/microsoft/graphrag

官網:https://microsoft.github.io/graphrag

現在正式開始體驗GraphRag吧。

溫馨提示

GraphRag Token的消費量比較大,剛開始體驗可以不按照官方的配置,改用字數少一點的文字以及換成gpt-4o-mini模型。

以沈從文的《邊城》為例。

建立一個Python虛擬環境,安裝GraphRag:

pip install graphrag

安裝好了之後:

mkdir biancheng
mkdir input

就是建立兩個資料夾,也可以手動操作,然後將《邊城》txt檔案放到input資料夾下,如下所示:

image-20240810091951237

開始初始化:

python -m graphrag.index --init --root ./biancheng

完成後,會出現一些檔案,如下所示:

image-20240810092251562

在.env檔案中輸入OpenAI Api Key,如下所示:

image-20240810092403747

在settings.yaml檔案中做一些配置,在這裡我的配置如下:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: gpt-4o-mini
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  # api_base: https://<instance>.openai.azure.com
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: text-embedding-3-small
    # api_base: https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  


chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: true
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

為了節約成本,把模型換成了gpt-4o-mini:

image-20240810092653575

為了後面在Gephi等軟體中檢視graphml檔案,這裡改成了true:

image-20240810093039475

這樣就配置好了,現在開始索引化:

python -m graphrag.index --root ./biancheng

索引化完成截圖:

img

現在可以檢視一下生成的節點和邊:

image-20240810093551574

image-20240810093633997

現在就可以開始查詢了。

先來全域性查詢:

python -m graphrag.query --root ./biancheng --method global "這篇小說講了什麼主題?"

image-20240810093814596

再來區域性查詢:

python -m graphrag.query --root ./biancheng --method local "翠翠在白雞關發生了什麼?" 

image-20240810093934417

《邊城》的字數大約在5萬到6萬字之間,檢視成本:

image-20240810094208222

只花了0.18美元,gpt-4o-mini價效比還是很高的。

使用SiliconCloud嘗試GraphRag——以《三國演義》為例

雖然使用OpenAI的模型效果很好,但是在國內使用OpenAI會有一些限制,可能很多人還沒有OpenAI Api Key,而且可能暫時也沒法弄到,因此可以選擇SiliconCloud做替代,SiliconCloud同時提供了相容OpenAI格式的對話模型與嵌入模型,並有多款先進開源大模型可用,剛註冊SiliconCloud會送一些額度,感興趣就可以馬上上手嘗試。

在使用SiliconCloud嘗試GraphRag時,為了快速把流程跑通,嘗試換一個小一點的文字,先以《嫦娥奔月》的故事為例,進行說明。

步驟跟之前的步驟一樣,就是在配置的時候,要改一些地方。

首先將Api Key改成SiliconCloud的Api Key:

image-20240810095355942

settings中需要更改的地方。

首先是對話模型部分:

image-20240810095744402

這裡我選用的是meta-llama/Meta-Llama-3.1-70B-Instruct模型,關於模型名字怎麼寫,參考SiliconCloud的文件,文件地址:https://docs.siliconflow.cn/docs/getting-started

image-20240810100146593

接下來是嵌入模型部分:

image-20240810100316696

這裡使用的嵌入模型是BAAI/bge-large-en-v1.5,使用BAAI/bge-large-zh-v1.5我這裡會出錯,大家也可以試一下,目前不知道什麼原因。

嵌入模型名稱該怎麼寫也是見文件:

image-20240810100757105

開始索引化:

image-20240810100903227

檢視節點:

image-20240810101324223

檢視邊:

image-20240810101359837

全域性提問:

python -m graphrag.query --root ./change1 --method global "這篇故事講了什麼主題?"

image-20240810100944628

區域性提問:

python -m graphrag.query --root ./change1 --method local "嫦娥送了什麼禮物給天帝?"

image-20240810101052387

現在把流程跑通了,可以嘗試《三國演義》了!!

使用同樣的設定,三國字數比較多,比較慢,耐心等待:

img

流程完成:

image-20240810101939345

檢視節點:

image-20240810102239596

檢視邊:

image-20240810102601774

全域性提問:

python -m graphrag.query --root ./sanguo --method global "三國講了什麼故事?"

image-20240810102020083

區域性提問:

python -m graphrag.query --root ./sanguo --method local "赤壁之戰是怎麼打敗曹操的?"

image-20240810102106817

使用本地模型嘗試GraphRag

本地嘗試GraphRag可以使用Ollama的對話模型,由於Ollama的嵌入模型沒有相容OpenAI的格式,所以嵌入模型可以使用LM Studio。

配置:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: llama3.1:70b
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: http://localhost:11434/v1
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.Q2_K.gguf
    api_base: http://localhost:1234/v1
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  


chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

理論上跑的起來,但是我的電腦配置不行,跑不了稍微大一點的模型,沒法實測。

混合使用

可以接入線上的對話模型Api,嵌入模型用本地的,但是SiliconCloud目前嵌入模型免費使用,也可以直接使用SiliconCloud的嵌入模型。

為了測試有哪些模型能把GraphRag流程跑通,但有些廠商只提供對話模型沒有提供嵌入模型或者提供的嵌入模型也不相容OpenAI格式該怎麼辦?

可以使用兩個Key,一個Key是SiliconCloud用於使用嵌入模型,一個Key是其它廠商的,用於使用對話模型。

比如可以這樣設定:

image-20240810103933743

配置檔案可以這樣寫:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${Other_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: glm-4-air 
  model_supports_json: true # recommended if this is available for your model.
  # max_tokens: 4000
  # request_timeout: 180.0
  api_base: https://open.bigmodel.cn/api/paas/v4
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: BAAI/bge-large-en-v1.5
    api_base: https://api.siliconflow.cn/v1
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  


chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: true
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

我嘗試了多個大模型,經過我這個簡單的測試,能把GraphRag流程跑通的(只是跑通,回答效果不一定好)的有如下這些:

image-20240810104317340

image-20240810104349626

溫馨提示

GraphRag Token消耗量很大,請注意額度!!

對於一個兩千多字的文字,一次GraphRag基本上就要耗費十多萬的Token:

image-20240810105125183

image-20240810105429469

參考

1、https://microsoft.github.io/graphrag/posts/get_started/

2、https://siliconflow.cn/zh-cn/siliconcloud

3、https://github.com/microsoft/graphrag/discussions/321

4、https://github.com/microsoft/graphrag/issues/374

5、https://www.youtube.com/watch?v=BLyGDTNdad0

相關文章