[原始碼解析]PyTorch如何實現前向傳播(2) --- 基礎類(下)
0x00 摘要
本系列將通過大概十篇左右文章來分析 PyTorch 的自動微分功能如何實現。本文是前向傳播的第二篇,介紹自動微分(梯度計算)所涉及的部分 PyTorch 基礎類。因為字數太多(1萬兩千字),所以拆分成上下兩篇。
系列前幾篇連線如下:
[原始碼解析]PyTorch如何實現前向傳播(1) --- 基礎類(上)
0x01 前文回顧
前文介紹了部分基礎類,比如 Variable, Function, Tensor,本文我們繼續分析其他基礎類。為了行文完整,我們從前文摘取了總體邏輯關係如下,SubBackward0,PowBackward0 和 都是Node 的派生類,在本文我們會細化這個圖。
+---------------------+ +----------------------+
| SubBackward0 | | PowBackward0 |
| | Edge | | Edge
| next_functions +-----+--------> | next_functions +----------> ...
| | | | |
+---------------------+ | +----------------------+
|
|
| +----------------------+
| Edge | MulBackward0 |
+--------> | | Edge
| next_functions +----------> ...
| |
+----------------------+
0x02 TensorImpl
2.1 轉嫁
PyTorch 之中大量使用了bridge設計模式,at::Tensor就是利用bridge模式把具體實現轉交給TensorImpl完成。
class TORCH_API Tensor {
private:
struct unsafe_borrow_t { explicit unsafe_borrow_t() = default; };
explicit Tensor(unsafe_borrow_t, const Tensor& rhs)
: impl_(c10::intrusive_ptr<at::TensorImpl, UndefinedTensorImpl>::reclaim(rhs.impl_.get())) {}
friend MaybeOwnedTraits<Tensor>;
protected:
friend class ::caffe2::Tensor;
void enforce_invariants();
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> impl_; // 轉嫁出去
};
具體如下:
+------------------------------------------------+ +---------------------------+
|Tensor | |TensorImpl |
| | | |
| | bridge | |
| <TensorImpl, UndefinedTensorImpl> impl_+-----------> | autograd_meta_ |
| | | |
| | | named_tensor_meta_ |
+------------------------------------------------+ | |
| pyobj_ |
| |
| sizes_and_strides_ |
| |
| storage_offset_ |
| |
| data_type_ |
| |
| device_opt_ |
| |
| |
+---------------------------+
2.2 定義
TensorImpl 定義如下,因為本文是自動微分和前向傳播相關,因此我們專注這部分功能的相關變數,就是autograd_meta_ 。除了 autograd_meta_ 之外,主要是一些描述Tensor大小的後設資料,包含元素的型別(dtype),Tensor所依賴的裝置,Strides(步幅)等等。
struct C10_API TensorImpl : public c10::intrusive_ptr_target {
Storage storage_;
private:
// This pointer points to an AutogradMeta struct that stores autograd-specific
// fields (such as grad_ / grad_fn_ / grad_accumulator_). This pointer always
// has unique ownership (meaning only one TensorImpl can own it at a time).
//
// autograd_meta_ can be nullptr, as an optimization. When this occurs, it is
// equivalent to having an autograd_meta_ pointing to a default constructed
// AutogradMeta; intuitively, tensors which don't require grad will have this
// field set to null.
//
// This means accessors on autograd_meta_ have to be careful to test if they
// got a nullptr, and handle default behavior appropriately in that case.
//
// Note that we don't enforce the invariant that if the AutogradMeta is
// default constructed, it is nullptr (to do this, we'd have to continuously
// check if an AutogradMeta became, by mutation, equal to the default
// constructed form. (This might be useful, but it seems rare enough that
// a requires_grad=True variable will turn back into the requires_grad=False
// version.) So there are three representable states:
//
// 1. autograd_meta_ == nullptr
// 2. autograd_meta_ is default constructed (semantically, same as (1))
// 3. autograd_meta_ has nontrivial information content
//
std::unique_ptr<c10::AutogradMetaInterface> autograd_meta_ = nullptr; // 主要關注這裡
protected:
std::unique_ptr<c10::NamedTensorMetaInterface> named_tensor_meta_ = nullptr;
c10::VariableVersion version_counter_;
PyObject* pyobj_ = nullptr;
c10::impl::SizesAndStrides sizes_and_strides_;
int64_t storage_offset_ = 0;
int64_t numel_ = 1;
caffe2::TypeMeta data_type_;
c10::optional<c10::Device> device_opt_;
bool is_contiguous_ : 1;
/* HasContiguityPolicy */ uint8_t has_contiguity_ : 2;
bool storage_access_should_throw_ = false;
bool is_channels_last_ : 1;
bool is_channels_last_contiguous_ : 1;
bool is_channels_last_3d_ : 1;
bool is_channels_last_3d_contiguous_ : 1;
bool is_non_overlapping_and_dense_ : 1;
bool is_wrapped_number_ : 1;
bool allow_tensor_metadata_change_ : 1;
bool reserved_ : 1;
DispatchKeySet key_set_;
};
對於自動微分,std::unique_ptr<c10::AutogradMetaInterface> autograd_meta_ = nullptr;
是關鍵。
此成員變數用來儲存自動微分相關的特殊變數,比如grad_ / grad_fn_ / grad_accumulator_
,每一個TensorImpl在同一時刻只有唯一一個AutogradMeta。
autograd_meta_ 是區分一個 Variable 是普通張量還是帶 autograd 功能張量的唯一標識:
- 對於不需要梯度的張量,autograd_meta_ 這個變數為null。
- 但是出於優化的目的,即使需要梯度,autograd_meta_ 也可以是null,這種情況等同於被賦值成一個預設的AutogradMeta。所以在使用時候需要仔細校驗是否為null。
- 在需要梯度情況下,一般來說,autograd_meta_會被初始化為 AutogradMeta 或者DifferentiableViewMeta。
AutogradMetaInterface 定義如下,這是一個抽象介面,需要派生類來實現具體功能。
struct C10_API AutogradMetaInterface {
virtual void set_requires_grad(
bool requires_grad,
at::TensorImpl* self_impl) = 0;
virtual bool requires_grad() const = 0;
virtual at::Tensor& mutable_grad() = 0;
virtual const at::Tensor& grad() const = 0;
virtual const at::Tensor& fw_grad(uint64_t level, const at::Tensor& self)
const = 0;
virtual void set_fw_grad(
const at::Tensor& new_grad,
const at::Tensor& self,
uint64_t level,
bool is_inplace_op) = 0;
virtual ~AutogradMetaInterface();
};
0x03 自動求導相關類
以下類是與自動求導相關。
3.1 AutogradMeta
AutogradMeta 繼承了 AutogradMetaInterface,儲存於自動微分相關的東西,比如節點的梯度值和梯度計算函式,其具體定義如下:
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// AutogradMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Each `Variable` has one unique `AutogradMeta` struct, which stores autograd
/// metadata fields that are necessary for tracking the Variable's autograd history.
/// As an optimization, a Variable may store a nullptr, in lieu of a default
/// constructed AutogradMeta.
/// 1. A `grad_fn`, if the variable is in the interior of the graph. This is the
/// gradient of the function that produced the variable.
/// 2. A `grad_accumulator`, if the variable is a leaf, which accumulates a
/// scalar gradient value into its `grad` variable.
struct TORCH_API AutogradMeta : public c10::AutogradMetaInterface {
std::string name_;
Variable grad_; // 儲存當前Variable的梯度,本身也是一個Variable
std::shared_ptr<Node> grad_fn_; // 非葉子節點才有意義,中間節點負責梯度計算。Pytorch就是判斷grad_fn_是否為空來判斷一個Variable是否是葉子節點,可以通過grad_fn()方法來訪問。
std::weak_ptr<Node> grad_accumulator_; // Node例項,只有葉子節點才有,葉子節點負責對梯度進行累加,grad_accumulator_就是梯度累加處理函式,梯度就被儲存在grad_變數之中
// This field is used to store all the forward AD gradients
// associated with this AutogradMeta (and the Tensor it corresponds to)
// There is a semantic 1:1 correspondence between AutogradMeta and
// ForwardGrad but:
// - This field is lazily populated.
// - This field is a shared_ptr but it must never be
// shared by multiple Tensors. See Note [ Using ForwardGrad ]
// Any transition from not_initialized to initialized
// must be protected by mutex_
std::shared_ptr<ForwardGrad> fw_grad_; // forward AD gradients
std::vector<std::shared_ptr<FunctionPreHook>> hooks_;
std::shared_ptr<hooks_list> cpp_hooks_list_;
// Only meaningful on leaf variables (must be false otherwise)
bool requires_grad_; // 此Variable是否需要grad
// Only meaningful on non-leaf variables (must be false otherwise)
bool retains_grad_; // 只有非葉子節點才有意義,是否需要保持圖
bool is_view_; // 此Variable是否是一個View(沒有實際儲存,這是基於base的Variable)
// The "output number" of this variable; e.g., if this variable
// was the second output of a function, then output_nr == 1.
// We use this to make sure we can setup the backwards trace
// correctly when this variable is passed to another function.
uint32_t output_nr_; // Variable是某一個函式的輸出資料,output_nr_ 就記錄了它是第幾個輸出,比如 = 0,就表示是函式的第1個輸出
// Mutex to ensure that concurrent read operations that modify internal
// state are still thread-safe. Used by grad_fn(), grad_accumulator(),
// fw_grad() and set_fw_grad()
// This is mutable because we need to be able to acquire this from const
// version of this class for the functions above
mutable std::mutex mutex_;
};
AutogradMeta 的主要成員變數如下:
- grad_ :儲存當前Variable例項的梯度,本身也是一個Variable。
- grad_fn :是個Node例項,非葉子節點才有。通過 grad_fn() 方法來訪問,實際上,PyTorch中就是通過 grad_fn是否為空 來判斷一個Variable是否是leaf variable。
- grad_accumulator_ :也是Node的例項,只有葉子節點才有。
- 通過Variable的grad_accumulator()來訪問。
- 葉子節點負責對梯度進行累加,grad_accumulator_ 就是梯度累加處理函式。
- 其對應梯度就被儲存在 grad_ 變數之中。
- requires_grad_ :表明此Variable例項是否需要grad。
- retains_grad_ : 只有非葉子節點才有意義,意義為是否需要保持圖。
- is_view_ :是個flag,表明此Variable例項是否是個view(沒有實際儲存,基於base的variable)。
- version_counter_ :version number。
- output_nr_:是個數字。output_nr_表明是 Node 的第幾個輸出,比如為 0 就 表明這個Variable是Node 的第 1 個輸出。
- base_ :是view的base variable。
具體如下:
+----------------------------------------------+ +-------------------------+
|Tensor | |TensorImpl |
| | | |
| | bridge | |
| <TensorImpl, UndefinedTensorImpl> impl_ +-----------> | autograd_meta_ +---------+
| | | | |
| | | named_tensor_meta_ | |
+----------------------------------------------+ | | |
| pyobj_ | |
| | |
| sizes_and_strides_ | |
| | |
| storage_offset_ | |
| | |
| data_type_ | |
| | |
| device_opt_ | |
| | |
| | |
+-------------------------+ |
|
+-------------------------+ |
| AutogradMeta | |
| +<--+
| |
| grad_fn_ |
| |
| grad_accumulator_ |
| |
| hooks_ |
| |
| retains_grad_ |
| |
| output_nr_ |
| |
| fw_grad_ |
| |
+-------------------------+
3.2 DifferentiableViewMeta
對於輸入變數,許多操作返回與輸入變數共享儲存的新變數,返回的變數被稱為在基變數之上的檢視(view)變數。在PyTorch中,我們有兩種型別的檢視:可微檢視和不可微的檢視。為了支援合適的版本校驗,無論是哪種型別,基變數和檢視變數必須分享同樣的版本計數器(version_counter)。
DifferentiableViewMeta 就是用來處理可微檢視。
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// DifferentiableViewMeta
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// DifferentiableViewMeta is created to support gradient tracking of
/// such **in-place** operations. In particular,
/// + if an in-place op is done on base, the grad_fn field of the view may
/// become stale. So accesses should always go through grad_fn(), which
/// reconstructs an updated grad_fn if the version_counter has incremented.
/// All other fields are always valid.
/// + if an in-place op is done on view, in rebase_history() of view, which is
/// called after every in-place op in VariableType.cpp, the grad_fn of base
/// is updated.
/// + if a single autograd Node returns multiple differentiable views, if any
/// output is modified by an inplace operation, the autograd engine will make
/// an equivalent graph (corresponding to the view operations) without using
/// equivalent graph, where each output is treated as if it were produced by a
/// distinct view operation. This discards the original (e.g., user provided)
/// grad_fn. If the provided grad_fn does more than the backward of the view,
/// then the DifferentiableViewMeta must be created with creation_meta=
/// CreationMeta::MULTI_OUTPUT_NODE to prevent the engine from ignoring the
/// provided grad_fn.
enum class CreationMeta: uint8_t { DEFAULT, IN_CUSTOM_FUNCTION, MULTI_OUTPUT_NODE,
NO_GRAD_MODE, MULTI_OUTPUT_SAFE, INFERENCE_MODE};
struct TORCH_API DifferentiableViewMeta : public AutogradMeta {
private:
/// Informations about the views
c10::optional<ViewInfo> backward_info_;
c10::optional<ViewInfo> forward_info_;
// Optimization to reduce the number of ViewInfo we create.
// In the (very common) case where backward_info_ == forward_info_, we only
// populate backward_info_ (that should be used as both the forward and backward
// view information) and set shared_view_info_ = true.
// Invariants:
// - If shared_view_info_ is false, there is no special constraints on
// backward_info_ and forward_info_
// - If shared_view_info_ is true, we must have:
// - backward_info_.has_value() == true
// - forward_info_.has_value() == false
bool shared_view_info_;
/// The two following fields are extra information that we track to ensure that
/// any operation on this backward view is valid.
/// The value of the version_counter at the time grad_fn was created. The
/// grad_fn field is stale if attr_version_ != version_counter.current_version().
uint32_t attr_version_;
CreationMeta creation_meta_;
};
3.3 AutogradContext
AutogradContext 是操作 autograd 的上下文,用來儲存在前向過程中產生的資訊,這樣在後向傳播中就可以訪問。
/// Context to save information during `forward` that can be accessed in `backward`
/// in custom autograd operations (see `torch::autograd::Function` for details).
struct TORCH_API AutogradContext {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
AutogradContext() : materialize_grads_(true) {}
AutogradContext(const AutogradContext &other) = delete;
AutogradContext& operator=(const AutogradContext& other) = delete;
/// Can be used to save non-variable data for `backward`.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ska::flat_hash_map<std::string, at::IValue> saved_data;
/// Saves the list of variables for a future call to `backward`. This
/// should be called at most once from inside of `forward`.
void save_for_backward(variable_list to_save);
/// Marks variables in the list as modified in an in-place operation. This
/// should be called at most once from inside of `forward` and all arguments
/// should be inputs.
void mark_dirty(const variable_list &inputs);
/// Marks outputs in the list as not requiring gradients. This should be called
/// at most once from inside of `forward` and all arguments should be outputs.
void mark_non_differentiable(const variable_list &outputs);
// Sets whether undefined output grad tensors should be expanded to tensors
// full of zeros before calling backward function. Default value is true.
void set_materialize_grads(bool value);
/// Get the list of variables that were saved in `forward` using
/// `save_for_backward()`. Before returning them to the user, a check is made to
/// ensure that they were not modified by any in-place operations.
variable_list get_saved_variables() const;
const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const;
const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const;
private:
std::unordered_set<at::TensorImpl*> non_differentiable_;
std::unordered_set<at::TensorImpl*> dirty_inputs_;
std::vector<torch::autograd::SavedVariable> saved_variables_;
variable_list to_save_;
bool materialize_grads_;
// The CppNode in the autograd graph that owns this AutogradContext. We need a
// weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it
// will always be alive when we want to use it.
std::weak_ptr<Node> grad_fn_;
bool has_freed_buffers_;
void save_variables();
template <class T> friend struct CppNode;
};
對使用者來說,AutogradContext 主要是在 自定義 Auto Function 方面。以下是註釋之中的例子。
/// ```
/// class MyFunction : public Function<MyFunction> {
/// public:
/// static variable_list forward(AutogradContext *ctx, int n, Variable var) {
/// // Save data for backward in context
/// ctx->saved_data["n"] = n;
/// var.mul_(2);
/// // Mark var as modified by inplace operation
/// ctx->mark_dirty({var});
/// return {var};
/// }
///
/// static variable_list backward(AutogradContext *ctx, variable_list
/// grad_output) {
/// // Use data saved in forward
/// auto n = ctx->saved_data["n"].toInt();
/// return {grad_output[0]*n};
/// }
/// };
/// ```
///
/// To use `MyFunction`:
/// ```
/// Variable x;
/// auto y = MyFunction::apply(6, x);
/// // Example backward call
/// y[0].sum().backward();
我們籍此進入到 Auto Function。
3.4 Auto Function
Autograd使用Function來計算結果和梯度,並對操作歷史進行編碼。在Tensor
上執行的每個操作都會建立一個新的 Function 物件,該物件執行計算並記錄發生了什麼。操作歷史以函式 DAG 的形式保留,邊表示資料依賴關係 ( input <- output
)。
通常,使用者與 Function 互動的唯一方式是建立子類和定義新操作(擴充套件新的功能),這是擴充套件 torch.autograd 的推薦方式。有關如何使用此類的更多詳細資訊,請參閱有關擴充套件 autograd 引擎的說明: https://pytorch.org/docs/stable/notes/extending.html#extending-torch-autograd
使用者如果要使用自定義autograd操作,請使用靜態正向和反向函式實現一個Function子類。
forward
可以接受任意多個引數,並應返回變數列表或變數。- 任何Variable引數的使用都將在計算圖中註冊,但是vectors/sets 或者其他資料結構不會遍歷註冊。
- 您可以使用c10::optional
作為引數之一,如果引數有值,它將在圖形中註冊為變數。 - forward應該將指向“torch::autograd::AutogradContext”的指標作為第一個引數。變數可以使用“ctx->save_for_backward”,儲存在“ctx->saved_data” map中,其他資料將以
<std::string, at::IValue>
”對的形式儲存在“ctx->saved_data” map中。
backward
應該使用指向torch::autograd::AutogradContext
的指標 以及一個變數列表作為引數。- 該變數列表包含的變數數量與
forward
輸出的變數數量相同。 - backward應該返回與輸入一樣多的變數,其中每個變數都包含與輸入相應的梯度。
- “forward”中儲存的變數可以通過“ctx->get_saved_Variables”訪問,其他儲存的資料可以通過“ctx->saved_data”訪問。
- 當 backward被呼叫時,通過呼叫每個Function物件的方法,並將返回的梯度傳遞給下一個Function ,我們就可以按照拓撲順序來處理這個計算圖 。
- 該變數列表包含的變數數量與
Function 具體派生子類例子如下:
class Exp(Function):
@staticmethod
def forward(ctx, i):
result = i.exp()
ctx.save_for_backward(result)
return result
@staticmethod
def backward(ctx, grad_output):
result, = ctx.saved_tensors
return grad_output * result
#Use it by calling the apply method:
output = Exp.apply(input)
如前所示,Function 已經被 Node 替換,所以我們再來到了 Node。
0x04 Node
早期版本中,Node的名字是Function,後來修改為Node,應該是想與節點概念更好的對應。
Node 是一個代表操作的抽象類,其輸入是0個或者多個Variable,輸出是0個或多個Variable。前向圖中該Node節點的輸入節點,就是後向傳播圖中該Node節點的輸出節點。PyTorch的autograd機制中,所有函式都派生自此類,並重寫其“apply”方法。這樣子類的例項就可以通過call操作符呼叫。
將autograd系統視為計算圖時,Node
是通過(有向)Edge
相互連線的頂點或節點,其本身通過(Node,input_nr)對來表示。Variable 是Node 的輸入和輸出,並在圖形執行期間在這些邊之間移動。當兩個或多個“邊”(來自不同來源)指向一個“節點”的同一輸入時,沿所有這些邊生成的值在轉發到目標“節點”之前將被隱式求和。
其子類通常用來表示可微函式及其梯度運算元。然而,請注意,由於“節點”的定義非常籠統,“節點”接受零或更多的輸入併產生零或更多的輸出。“節點”的使用非常靈活,超出了純數學運算的範圍。例如,AccumageGrad
函式是一個sink,它接受一個輸入,但不產生輸出,而是將輸入作為副作用進行累積。在另一端,“GraphRoot”函式不接收來自其他函式的輸入,而是產生多個輸出。具體可以參見 torch/csrc/autograd/function.h 的註釋。
4.1 定義
我們看看 Node 類的定義,為了更好的說明,這裡只保留成員變數,刪除成員函式。
using edge_list = std::vector<Edge>;
struct TORCH_API Node : std::enable_shared_from_this<Node> {
protected:
/// Performs the `Node`'s actual operation.
virtual variable_list apply(variable_list&& inputs) = 0;
/// Calls `apply()`, but instruments it with tracing machinery.
variable_list traced_apply(variable_list inputs);
/// NOTE [ Sequence Number]
///
/// The sequence_nr has two main usages in autograd:
///
/// 1) Helps determine the node's execution priority in the engine.
/// All else being equal, nodes with higher priority numbers are executed first.
/// Thus, nodes corresponding to ops executed later are the first to be executed in
/// the backward pass. One caveat is that we prioritize AccumulateGrad nodes by
/// explicitly setting its sequence_nr to be UINT64_MAX.
/// 2) The sequence number of this `Node` is paired with with thread_id it was created in
/// as a unique identifier by the profiler to annotate recorded events.
/// The purpose of this is to help users (and possibly programs) interpreting the profiler's
/// output to correlate backward nodes with its forward ops.
/// We need both sequence_nr and thread_id to identify a node because sequence_nr is
/// thread_local, i.e., starts counting up from zero in a new thread
// Sequence number used to correlate backward nodes with forward ops in the
// profiler and provide determinisim in the engine.
const uint64_t sequence_nr_;
// NOTE [ Topological Number ]
//
// topological_nr is used to prune branches in the DAG during autograd discovery as
// maintaining topological_nr helps us check in O(1) if there does NOT exist
// a directed path between two nodes.
//
// The topological order number of this `Node` representing the length of the
// longest possible path from this Node to any leaf node. If you are leaf node,
// aka AccumulateGrad, this will be zero. This value has the property that
// For every pair of nodes X, Y in G, existence of a directed path from X to Y
// implies topo_nr(X) > topo_nr(Y). The converse is not true, however, so we
// cannot prove existence of a path from X to Y, only non-existence.
//
// One assumption we make when using topo_nr is that once a node
// has been used, i.e., has a parent node, its own topo_nr does not change
// we have added some checks with the `has_parent_` field to enforce this.
//
// What NOT to do:
//
// 1) 2 -> 1 -> 0 In this diagram we label nodes with their topo_nr.
// 2 -> 1 -> 0 We have two simple graphs that can each arise from
// `t.exp().exp()`, for example.
// 2) 2 -> 1 -> 0
// /
// 2 -> 1 -> 0 We add 2 as a next edge to 1 even though 1 already
// has a parent.
// 3) 2 -> 1 -> 0
// /
// 2 -> 3 -> 0 2 < 3, yet there exists a path from 2 to 3!
//
uint64_t topological_nr_ = 0;
// Tracks whether this node has been added as the next_edge of another node
// via set_next_edge(s), which always calls topological_nr() of all its children
// See NOTE [ Topological Number ] for why we need this.
mutable bool has_parent_ = false;
// Id of the thread that created the instance
uint64_t thread_id_ = 0;
std::mutex mutex_;
// 前向過程中的輸入variable,在前向過程中與該運算元相關聯的邊
edge_list next_edges_;
PyObject* pyobj_ = nullptr; // weak reference
std::unique_ptr<AnomalyMetadata> anomaly_metadata_ = nullptr;
std::vector<std::unique_ptr<FunctionPreHook>> pre_hooks_;
std::vector<std::unique_ptr<FunctionPostHook>> post_hooks_;
at::SmallVector<InputMetadata, 2> input_metadata_;
// 這裡對運算子()進行過載,核心其實就是呼叫apply()
variable_list operator()(variable_list&& inputs) {
// In the first iteration of named tensors, autograd ignores names and
// operates on unnamed tensors. In the long term, autograd should
// probably operate with names.
at::NoNamesGuard no_names_guard;
bool pre_sampled = false;
if (at::shouldRunRecordFunction(&pre_sampled)) {
// Using RecordFunction to trigger observers in the backward pass
at::RecordFunction guard(at::RecordScope::BACKWARD_FUNCTION, pre_sampled);
if (guard.isActive()) {
// Using sequence number and thread id to correlate with
// the forward pass function
guard.setForwardThreadId(thread_id_);
if (guard.needsInputs()) {
guard.before(
name(),
std::vector<c10::IValue>(inputs.begin(), inputs.end()),
sequence_nr());
} else {
guard.before(name(), sequence_nr());
}
}
// keeping stack guard object alive during the call
return apply(std::move(inputs));
} else {
return apply(std::move(inputs));
}
}
};
其建構函式是:
explicit Node(
uint64_t sequence_nr,
edge_list&& next_edges = edge_list())
: sequence_nr_(sequence_nr),
next_edges_(std::move(next_edges)) {
for (const Edge& edge: next_edges_) {
update_topological_nr(edge);
}
if (AnomalyMode::is_enabled()) {
metadata()->store_stack();
// If anomaly mode is enabled and graph is constructed, then assign the
// currently evaluating node as the parent of this node.
// A parent is a Node where this Node is created.
// We are tracking the parents to track multiple backward operations.
assign_parent();
}
// Store the thread_id of the forward operator.
// See NOTE [ Sequence Numbers ]
thread_id_ = at::RecordFunction::currentThreadId();
}
4.2 重要成員變數
我們具體解釋一些重要成員變數。
4.2.1 input_metadata_
input_metadata_ 代表了 input data 的元資訊,界定了一個Function的輸入引數。
4.2.2 next_edges_
這是在前向過程中與該運算元相關聯的邊。
我們將 PyTorch的autograd系統看作是一個圖,每個 Node 例項就是圖節點,各個 Node 例項之間則是通過Edge連線的。Edge是個結構體,通過 (Function, input_nr) 的配對來代表graph中的邊。Node 的成員 next_edges_ 正是一組這樣的Edge例項,其代表此 Node 例項的返回值要輸出到的(另外)Node,即 next_edges_是 Node 和Node 之間的紐帶。
Node 的輸入輸出都是Variable例項,因此當一個graph被執行的時候,Variable例項就在這些edges之間來傳輸流動。當兩個或者多個Edge指向同一個Node的時候(這個節點的入度大於1),這些edges的輸出將被隱含相加起來再送給指向的目標 Node。
使用者可以使用add_next_edge()來向 Node 新增一個edge, 通過next_edge(index)獲取對應的edge,通過next_edges()方法獲得迭代edge的迭代器。
4.2.3 sequence_nr_
該變數用於將網路中的後向節點與前向操作關聯起來,並且在引擎中提供確定資訊。sequence_nr_ 隨著Function例項的不斷構建而單調增長,具體有兩個用處:
-
幫助確定節點在引擎中的執行優先順序。在所有其他條件相同的情況下,優先順序較高的節點將首先執行。因此,前向傳播時後執行的操作就是後向傳播之中先執行的操作。需要注意的一點是,對於 AccumulateGrad 節點,我們將sequence_nr顯式地設定為UINT64_MAX。在PyTorch的反向圖計算中,
AccumulateGrad
型別代表的就是葉子節點型別,也就是計算圖終止節點。AccumulateGrad
類中有一個.variable
屬性指向葉子節點。 -
此“節點”的 sequence_nr_ 與 thread_id 一起搭配,作為一個節點的唯一標示,在 profiler 之中記錄事件。這樣做的目的是幫助使用者(可能還有程式)解釋 profiler 的輸出,以便將向後的節點與其向前的操作關聯起來。因為 sequence_nr 是 thread_local 型別變數,即在新執行緒中從零開始計數。
4.2.4 topological_nr_
此變數是 “節點”的拓撲順序號,表示從該節點到任何葉節點的最長可能路徑的長度。如果有一個葉節點,即AccumulateGrad,topological_nr_ 將是零。
topological_nr_ 用於在autograd發現期間對DAG中的分支進行修剪,維護拓撲 topological_nr_有助於我們在兩個節點之間不存在有向路徑時,在O(1) 時間完成檢查。
topological_nr_ 具有以下屬性:
- 對於G中的每一對節點X,Y,如果存在從X到Y的有向路徑,則意味著 topo_nr(X) > topo_nr(Y)。然而,事實並非如此,因此我們無法證明從X到Y的路徑的存在性,只能證明不存在。
- 我們在使用 topological_nr_ 時所做的一個假設是:一旦使用了一個節點,即它有一個父節點,那麼它自己的topological_nr_ 就不會改變。我們在“has_parent_”欄位中新增了一些檢查來強制執行這一點。
4.2.5 operator()
variable_list operator()(variable_list&& inputs)
是Node的主要方法。該方法接收vector封裝的多個Variable例項,並輸出vector封裝的多個Variable例項,然後呼叫apply 具體業務函式。該方法依靠C++的多型,將對operator 的呼叫轉化為對自身(子類)的apply方法呼叫。
PyTorch中所有用於反向傳播計算的函式都繼承自Function類,並重寫Function類中的apply純虛擬函式。
0x05 Edge
從名字可知,Edge 就是計算圖的邊。主要變數是:
- std::shared_ptr
function :本邊指向的目標Node。 - uint32_t input_nr : 指定本Edge是 function 的第幾個輸入 。
using tensor_list = std::vector<at::Tensor>;
using variable_list = std::vector<Variable>;
using edge_list = std::vector<Edge>;
using saved_variable_list = std::vector<SavedVariable>;
using IndexRange = std::pair<size_t, size_t>;
/// Represents a particular input of a function.
struct Edge {
Edge() noexcept : function(nullptr), input_nr(0) {}
Edge(std::shared_ptr<Node> function_, uint32_t input_nr_) noexcept
: function(std::move(function_)), input_nr(input_nr_) {}
/// Convenience method to test if an edge is valid.
bool is_valid() const noexcept {
return function != nullptr;
}
// Required for use in associative containers.
bool operator==(const Edge& other) const noexcept {
return this->function == other.function && this->input_nr == other.input_nr;
}
bool operator!=(const Edge& other) const noexcept {
return !(*this == other);
}
/// The function this `Edge` points to.
std::shared_ptr<Node> function; // 指向的Node
/// The identifier of a particular input to the function.
uint32_t input_nr; //指定本Edge是function的第幾個輸入
};
}} // namespace torch::autograd
0x06 邏輯圖
我們把文初的邏輯圖細化如下,上半部分是 Python 世界,下半部分是 C++世界:
+--------------------------------------------+ +------------------------------+
| SubBackward0 | | PowBackward0 |
| | | | Edge
| | | next_functions +----------> ...
| next_functions[0] = (PowBackward0, 0) +----------> | |
| | +------------------------------+
| |
| | +-------------------------------+
| next_functions[1] = (MulBackward0, 0) +----------> | MulBackward0 |
| | | | Edge
| | | next_functions +----------> ...
+--------------------------------------------+ | |
+-------------------------------+
^
|
|
| Python
+--------------------------------------------------------------------------------------------------------+
| C++
|
v
+---------------------------------------------+ +----------------------+ +------------------+
| SubBackward0 | | Edge 1 | | PowBackward0 |
| +-------------------------> | | | |
| | | | function +----------> | |
| + | | | | |
| next_edges_ = [Edge 1, Edge 2] | | input_nr = 0 | | |
| + | +----------------------+ +------------------+
| | |
| | |
+---------------------------------------------+ +----------------------+ +------------------+
| | Edge 2 | | MulBackward0 |
| | | | |
+----------------> | function +----------> | |
| | | |
| input_nr = 0 | | |
| | | |
+----------------------+ +------------------+
手機如下:
至此,傳播過程中的基礎類已經分析完畢,下一篇我們介紹如何使用這些類來完成前向傳播。
0xFF 參考
https://github.com/KeithYin/read-pytorch-source-code/
pytorch學習筆記(十三):backward過程的底層實現解析
How autograd encodes the history
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html