1、NetworkX 圖論與網路工具包
NetworkX 是基於 Python 語言的圖論與複雜網路工具包,用於建立、操作和研究複雜網路的結構、動力學和功能。
NetworkX 可以以標準和非標準的資料格式描述圖與網路,生成圖與網路,分析網路結構,構建網路模型,設計網路演算法,繪製網路圖形。
NetworkX 提供了圖形的類、物件、圖形生成器、網路生成器、繪圖工具,內建了常用的圖論和網路分析演算法,可以進行圖和網路的建模、分析和模擬。
NetworkX 的官網和文件
官方文件: https://networkx.org/documentation/stable/
pdf 文件: https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf
NetworkX 的安裝
NetworkX 的安裝要求:Python 3.2 以上版本,推薦安裝 NumPy、SciPy、Matplotlib、Graphviz 工具包的支援。
pip 安裝:
pip3 install networkx
pip3 install networkx -i https://mirrors.aliyun.com/pypi/simple
本系列寫作計劃
NetworkX 的功能非常強大和龐雜,所涉及內容遠遠、遠遠地超出了數學建模的範圍,甚至於花了很長時間還不能對其進行比較系統的概括。
本系列以數模學習和應用的需求為主線,介紹相關的基本功能和典型演算法的應用。
=== 關注 Youcans 原創系列(https://www.cnblogs.com/youcans/)
2、圖、頂點和邊的建立與基本操作
圖由頂點和連線頂點的邊構成,但與頂點的位置、邊的曲直長短無關。
圖提供了一種處理關係和互動等抽象概念的更好的方法,它還提供了直觀的視覺方式來思考這些概念。
Networkx支援建立簡單無向圖、有向圖和多重圖(multigraph);內建許多標準的圖論演算法,節點可為任意資料;支援任意的邊值維度,功能豐富,簡單易用。
2.1 圖的基本概念
- 圖(Graph)。若干點和一些連線這些點的連線,所構成關係結構就是一個圖。
- 頂點(Node)和邊(Edge)。圖中的點稱為頂點,也稱節點。兩個頂點之間的連線,稱為邊。
- 平行邊(Parallel edge)和迴圈(Cycle)。起點相同、終點也相同的兩條邊稱為平行邊。起點和終點重合的邊稱為迴圈。
- 有向圖(Digraph)和無向圖(Undirected graph)。圖中的每條邊都帶有方向,稱為有向圖;圖中的每條邊都沒有方向,稱為無向圖;有的邊帶有方向,有的邊沒有方向,稱為混合圖。
- 賦權圖(Weighted graph)。圖中的每條邊都有一個或多個對應的引數,稱為賦權圖。該引數稱為這條邊的權,權可以用來表示兩點間的距離、時間、費用。
- 度(Degree)。與頂點相連的邊的數量,稱為該頂點的度。
2.2 圖、頂點和邊的操作
Networkx很容易建立圖、向圖中新增頂點和邊、從圖中刪除頂點和邊,也可以檢視、刪除頂點和邊的屬性。
圖的建立
Graph()類、DiGraph()類、MultiGraph()類和MultiDiGraph() 類分別用來建立 無向圖、有向圖、多圖和有向多圖。
class Graph(incoming_graph_data=None, **attr)
import networkx as nx
import networkx as nx # 匯入 NetworkX 工具包
# 建立 圖
G1 = nx.Graph() # 建立:空的 無向圖
G2 = nx.DiGraph() #建立:空的 有向圖
G3 = nx.MultiGraph() #建立:空的 多圖
G4 = nx.MultiDiGraph() #建立:空的 有向多圖
頂點的新增、刪除和檢視
圖的每個頂點都有唯一的標籤屬性(label),可以用整數或字元型別表示,頂點還可以自定義任意屬性。
頂點的常用操作:新增頂點,刪除頂點,定義頂點屬性,檢視頂點和頂點屬性。
# 頂點(node)的操作
G1.add_node(1) # 向 G1 新增頂點 1
G1.add_node(1,name='n1',weight=1.0) # 新增頂點 1,定義 name, weight 屬性
G1.add_node(2,date='May-16') # 新增頂點 2,定義 time 屬性
G1.add_nodes_from([3, 0, 6], dist=1) # 新增多個頂點:3,0,6
# 檢視頂點和頂點屬性
print(G1.nodes()) # 檢視頂點
# [1, 2, 3, 0, 6]
print(G1._node) # 檢視頂點屬性
# {1: {'name': 'n1', 'weight': 1.0}, 2: {'date': 'May-16'}, 3: {'dist': 1}, 0: {'dist': 1}, 6: {'dist': 1}}
H = nx.path_graph(8) # 建立 路徑圖 H:由 n個節點、n-1條邊連線,節點標籤為 0 至 n-1
G1.add_nodes_from(H) # 由路徑圖 H 向圖 G1 新增頂點 0~9
print(G1.nodes()) # 檢視頂點
# [1, 2, 3, 0, 6, 4, 5, 7] # 頂點列表
G1.add_nodes_from(range(10, 15)) # 向圖 G1 新增頂點 10~14
print(G1.nodes()) # 檢視頂點
# [1, 2, 3, 0, 6, 4, 5, 7, 10, 11, 12, 13, 14]
# 從圖中刪除頂點
G1.remove_nodes_from([1, 11, 13, 14]) # 通過頂點標籤的 list 刪除多個頂點
print(G1.nodes()) # 檢視頂點
# [2, 3, 0, 6, 4, 5, 7, 10, 12] # 頂點列表
# === 關注 Youcans 原創系列(https://www.cnblogs.com/youcans/)
邊的新增、刪除和檢視
邊是兩個頂點之間的連線,在 NetworkX 中用 邊是由對應頂點的名字的元組組成 e=(node1,node2)。邊可以設定權重、關係等屬性。
邊的常用操作:新增邊,刪除邊,定義邊的屬性,檢視邊和邊的屬性。向圖中新增邊時,如果新增的邊的頂點是圖中不存在的,則自動向圖中新增該頂點。
# 邊(edge)的操作
G1.add_edge(1,5) # 向 G1 新增邊 1-5,並自動新增圖中沒有的頂點
G1.add_edge(0,10, weight=2.7) # 向 G1 新增邊 0-10,並設定屬性
G1.add_edges_from([(1,2,{'weight':0}), (2,3,{'color':'blue'})]) # 向圖中新增邊,並設定屬性
print(G1.nodes()) # 檢視頂點
# [2, 3, 0, 6, 4, 5, 7, 10, 12, 1] # 自動新增了圖中沒有的頂點 1
G1.add_edges_from([(3,6),(1,2),(6,7),(5,10),(0,1)]) # 向圖中新增多條邊
G1.add_weighted_edges_from([(1,2,3.6),[6,12,0.5]]) # 向圖中新增多條賦權邊: (node1,node2,weight)
G1.remove_edge(0,1) # 從圖中刪除邊 0-1
# G1.remove_edges_from([(2,3),(1,5),(6,7)]) # 從圖中刪除多條邊
# print(G1.edges(data=True)) # 檢視所有邊的屬性
print(G1.edges) # 檢視所有邊
# [(2, 1), (2, 3), (3, 6), (0, 10), (6, 7), (6, 12), (5, 1), (5, 10)]
print(G1.get_edge_data(1,2)) # 檢視指定邊 1-2 的屬性
# {'weight': 3.6}
print(G1[1][2]) # 檢視指定邊 1-2 的屬性
# {'weight': 3.6}
檢視圖、頂點和邊的資訊
print(G1.nodes) # 返回所有的頂點 [node1,...]
# [1, 2, 0, 6, 4, 12, 5, 9, 8, 3, 7]
print(G1.edges) # 返回所有的邊 [(node1,node2),...]
# [(1,5), (1,2), (2,8), (2,3), (0,9), (6,5), (6,7), (6,12), (4,3), (4,5), (9,8), (8,7)]
print(G1.degree) # 返回各頂點的度 [(node1,degree1),...]
# [(1,2), (2,3), (0,1), (6,3), (4,2), (12,1), (5,3), (9,2), (8,3), (3,2), (7,2)]
print(G1.number_of_nodes()) # 返回所有的頂點 [node1,...]
# 11
print(G1.number_of_edges()) # 返回所有的頂點 [node1,...]
# 12
print(G1[2]) # 返回指定頂點相鄰的頂點和頂點的屬性
# {1: {'weight': 3.6}, 8: {'color': 'blue'}, 3: {}}
print(G1.adj[2]) # 返回指定頂點相鄰的頂點和頂點的屬性
# {1: {'weight': 3.6}, 8: {'color': 'blue'}, 3: {}}
print(G1[6][12]) # 返回指定邊的屬性
# {'weight': 0.5}
print(G1.adj[6][12]) # 返回指定邊的屬性
# {'weight': 0.5}
print(G1.degree(5)) # 返回指定頂點的度
# 3
print('nx.info:',nx.info(G1)) # 返回圖的基本資訊
print('nx.degree:',nx.degree(G1)) # 返回圖中各頂點的度
print('nx.density:',nx.degree_histogram(G1)) # 返回圖中度的分佈
print('nx.pagerank:',nx.pagerank(G1)) # 返回圖中各頂點的頻率分佈
2.3 圖的屬性和方法
圖的方法
方法 | 說明 |
---|---|
G.has_node(n) | 當圖 G 中包括頂點 n 時返回 True |
G.has_edge(u, v) | 當圖 G 中包括邊 (u,v) 時返回 True |
G.number_of_nodes() | 返回 圖 G 中的頂點的數量 |
G.number_of_edges() | 返回 圖 G 中的邊的數量 |
G.number_of_selfloops() | 返回 圖 G 中的自迴圈邊的數量 |
G.degree([nbunch, weight]) | 返回 圖 G 中的全部頂點或指定頂點的度 |
G.selfloop_edges([data, default]) | 返回 圖 G 中的全部的自迴圈邊 |
G.subgraph([nodes]) | 從圖 G1中抽取頂點[nodes]及對應邊構成的子圖 |
union(G1,G2) | 合併圖 G1、G2 |
nx.info(G) | 返回圖的基本資訊 |
nx.degree(G) | 返回圖中各頂點的度 |
nx.degree_histogram(G) | 返回圖中度的分佈 |
nx.pagerank(G) | 返回圖中各頂點的頻率分佈 |
nx.add_star(G,[nodes],**attr) | 向圖 G 新增星形網路 |
nx.add_path(G,[nodes],**attr) | 向圖 G 新增一條路徑 |
nx.add_cycle(G,[nodes],**attr) | 向圖 G 新增閉合路徑 |
例程:
# Copyright 2021 YouCans, XUPT
G1.clear() # 清空圖G1
nx.add_star(G1, [1, 2, 3, 4, 5], weight=1) # 新增星形網路:以第一個頂點為中心
# [(1, 2), (1, 3), (1, 4), (1, 5)]
nx.add_path(G1, [5, 6, 8, 9, 10], weight=2) # 新增路徑:順序連線 n個節點的 n-1條邊
# [(5, 6), (6, 8), (8, 9), (9, 10)]
nx.add_cycle(G1, [7, 8, 9, 10, 12], weight=3) # 新增閉合迴路:迴圈連線 n個節點的 n 條邊
# [(7, 8), (7, 12), (8, 9), (9, 10), (10, 12)]
print(G1.nodes) # 返回所有的頂點 [node1,...]
nx.draw_networkx(G1)
plt.show()
G2 = G1.subgraph([1, 2, 3, 8, 9, 10])
G3 = G1.subgraph([4, 5, 6, 7])
G = nx.union(G2, G3)
print(G.nodes) # 返回所有的頂點 [node1,...]
# [1, 2, 3, 8, 9, 10, 4, 5, 6, 7]
3、圖的繪製與分析
3.1 圖的繪製
視覺化是圖論和網路問題中很重要的內容。NetworkX 在 Matplotlib、Graphviz 等圖形工具包的基礎上,提供了豐富的繪圖功能。
本系列擬對圖和網路的視覺化作一個專題,在此只簡單介紹基於 Matplotlib 的基本繪圖函式。基本繪圖函式使用字典提供的位置將節點放置在散點圖上,或者使用佈局函式計算位置。
方法 | 說明 |
---|---|
draw(G[,pos,ax]) | 基於 Matplotlib 繪製 圖 G |
draw_networkx(G[, pos, arrows, with_labels]) | 基於 Matplotlib 繪製 圖 G |
draw_networkx_nodes(G, pos[, nodelist, . . . ]) | 繪製圖 G 的頂點 |
draw_networkx_edges(G, pos[, edgelist, . . . ]) | 繪製圖 G 的邊 |
draw_networkx_labels(G, pos[, labels, . . . ]) | 繪製頂點的標籤 |
draw_networkx_edge_labels(G, pos[, . . . ]) | 繪製邊的標籤 |
其中,nx.draw() 和 nx.draw_networkx() 是最基本的繪圖函式,並可以通過自定義函式屬性或其它繪圖函式設定不同的繪圖要求。常用的屬性定義如下:
- 'node_size':指定節點的尺寸大小,預設300
- 'node_color':指定節點的顏色,預設紅色
- 'node_shape':節點的形狀,預設圓形
- ''alpha':透明度,預設1.0,不透明
- 'width':邊的寬度,預設1.0
- 'edge_color':邊的顏色,預設黑色
- 'style':邊的樣式,可選 'solid'、'dashed'、'dotted'、'dashdot'
- 'with_labels':節點是否帶標籤,預設True
- 'font_size':節點標籤字型大小,預設12
- 'font_color':節點標籤字型顏色,預設黑色
3.2 圖的分析
NetwotkX 提供了圖論函式對圖的結構進行分析:
子圖
子圖是指頂點和邊都分別是圖 G 的頂點的子集和邊的子集的圖。
subgraph()方法,按頂點從圖 G 中抽出子圖。例程如前。
連通子圖
如果圖 G 中的任意兩點間相互連通,則 G 是連通圖。
connected_components()方法,返回連通子圖的集合。
G = nx.path_graph(4)
nx.add_path(G, [7, 8, 9])
# 連通子圖
listCC = [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
maxCC = max(nx.connected_components(G), key=len)
print('Connected components:{}'.format(listCC)) # 所有連通子圖
# Connected components:[4, 3]
print('Largest connected components:{}'.format(maxCC)) # 最大連通子圖
# Largest connected components:{0, 1, 2, 3}
** 強連通**
如果有向圖 G 中的任意兩點間相互連通,則稱 G 是強連通圖。
strongly_connected_components()方法,返回所有強連通子圖的列表。
# 強連通
G = nx.path_graph(4, create_using=nx.DiGraph())
nx.add_path(G, [3, 8, 1])
# 找出所有的強連通子圖
con = nx.strongly_connected_components(G)
print(type(con),list(con))
# <class 'generator'> [{8, 1, 2, 3}, {0}]
弱連通
如果一個有向圖 G 的基圖是連通圖,則有向圖 G 是弱連通圖。
weakly_connected_components()方法,返回所有弱連通子圖的列表。
# 弱連通
G = nx.path_graph(4, create_using=nx.DiGraph()) #預設生成節點 0,1,2,3 和有向邊 0->1,1->2,2->3
nx.add_path(G, [7, 8, 3]) #生成有向邊:7->8->3
con = nx.weakly_connected_components(G)
print(type(con),list(con))
# <class 'generator'> [{0, 1, 2, 3, 7, 8}]
=== 關注 Youcans 原創系列(https://www.cnblogs.com/youcans/)
版權說明:
參考文獻宣告:本文部分內容參考了 NetworkX 官網介紹:https://networkx.org/documentation/stable/
YouCans 原創作品
Copyright 2021 YouCans, XUPT
Crated:2021-05-16