本節以一個實際數學建模案例,講解 PuLP 求解線性規劃問題的建模與程式設計。
1、問題描述
某廠生產甲乙兩種飲料,每百箱甲飲料需用原料6千克、工人10名,獲利10萬元;每百箱乙飲料需用原料5千克、工人20名,獲利9萬元。
今工廠共有原料60千克、工人150名,又由於其他條件所限甲飲料產量不超過8百箱。
(1)問如何安排生產計劃,即兩種飲料各生產多少使獲利最大?
(2)若投資0.8萬元可增加原料1千克,是否應作這項投資?投資多少合理?
(3)若每百箱甲飲料獲利可增加1萬元,是否應否改變生產計劃?
(4)若每百箱甲飲料獲利可增加1萬元,若投資0.8萬元可增加原料1千克,是否應作這項投資?投資多少合理?
(5)若不允許散箱(按整百箱生產),如何安排生產計劃,即兩種飲料各生產多少使獲利最大?
2、用PuLP 庫求解線性規劃
2.1 問題 1
(1)數學建模
問題建模:
決策變數:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
目標函式:
max fx = 10*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值範圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 程式設計
ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize) # 定義問題 1,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2
ProbLP1 += (10*x1 + 9*x2) # 設定目標函式 f(x)
ProbLP1 += (6*x1 + 5*x2 <= 60) # 不等式約束
ProbLP1 += (10*x1 + 20*x2 <= 150) # 不等式約束
ProbLP1.solve()
print(ProbLP1.name) # 輸出求解狀態
print("Status:", pulp.LpStatus[ProbLP1.status]) # 輸出求解狀態
for v in ProbLP1.variables():
print(v.name, "=", v.varValue) # 輸出每個變數的最優值
print("F1(x)=", pulp.value(ProbLP1.objective)) # 輸出最優解的目標函式值
(3)執行結果
ProbLP1
x1=6.4285714
x2=4.2857143
F1(X)=102.8571427
2.2 問題 2
(1)數學建模
問題建模:
決策變數:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
x3:增加投資(單位:萬元)
目標函式:
max fx = 10*x1 + 9*x2 - x3
約束條件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值範圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 程式設計
ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize) # 定義問題 2,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2
x3 = pulp.LpVariable('x3', cat='Continuous') # 定義 x3
ProbLP2 += (10*x1 + 9*x2 - x3) # 設定目標函式 f(x)
ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60) # 不等式約束
ProbLP2 += (10*x1 + 20*x2 <= 150) # 不等式約束
ProbLP2.solve()
print(ProbLP2.name) # 輸出求解狀態
print("Status:", pulp.LpStatus[ProbLP2.status]) # 輸出求解狀態
for v in ProbLP2.variables():
print(v.name, "=", v.varValue) # 輸出每個變數的最優值
print("F2(x)=", pulp.value(ProbLP2.objective)) # 輸出最優解的目標函式值
(3)執行結果
ProbLP2
x1=8.0
x2=3.5
x3=4.4
F2(X)=107.1
2.3 問題 3
(1)數學建模
問題建模:
決策變數:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
目標函式:
max fx = 11*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值範圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 程式設計
ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize) # 定義問題 3,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2
ProbLP3 += (11 * x1 + 9 * x2) # 設定目標函式 f(x)
ProbLP3 += (6 * x1 + 5 * x2 <= 60) # 不等式約束
ProbLP3 += (10 * x1 + 20 * x2 <= 150) # 不等式約束
ProbLP3.solve()
print(ProbLP3.name) # 輸出求解狀態
print("Status:", pulp.LpStatus[ProbLP3.status]) # 輸出求解狀態
for v in ProbLP3.variables():
print(v.name, "=", v.varValue) # 輸出每個變數的最優值
print("F3(x) =", pulp.value(ProbLP3.objective)) # 輸出最優解的目標函式值
(3)執行結果
ProbLP3
x1=8.0
x2=2.4
F3(X) = 109.6
2.4 問題 4
(1)數學建模
問題建模:
決策變數:
x1:甲飲料產量(單位:百箱)
x2:乙飲料產量(單位:百箱)
x3:增加投資(單位:萬元)
目標函式:
max fx = 11*x1 + 9*x2 - x3
約束條件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值範圍:
給定條件:x1, x2 >= 0,x1 <= 8
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 程式設計
ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize) # 定義問題 2,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定義 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定義 x2
x3 = pulp.LpVariable('x3', cat='Continuous') # 定義 x3
ProbLP4 += (11 * x1 + 9 * x2 - x3) # 設定目標函式 f(x)
ProbLP4 += (6 * x1 + 5 * x2 - 1.25 * x3 <= 60) # 不等式約束
ProbLP4 += (10 * x1 + 20 * x2 <= 150) # 不等式約束
ProbLP4.solve()
print(ProbLP4.name) # 輸出求解狀態
print("Status:", pulp.LpStatus[ProbLP4.status]) # 輸出求解狀態
for v in ProbLP4.variables():
print(v.name, "=", v.varValue) # 輸出每個變數的最優值
print("F4(x) = ", pulp.value(ProbLP4.objective)) # 輸出最優解的目標函式值
(3)執行結果
ProbLP4
x1=8.0
x2=3.5
x3=4.4
F4(X) = 115.1
2.5 問題 5:整數規劃問題
(1)數學建模
問題建模:
決策變數:
x1:甲飲料產量,正整數(單位:百箱)
x2:乙飲料產量,正整數(單位:百箱)
目標函式:
max fx = 10*x1 + 9*x2
約束條件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值範圍:
給定條件:x1, x2 >= 0,x1 <= 8,x1, x2 為整數
推導條件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7
說明:本題中要求飲料車輛為整百箱,即決策變數 x1,x2 為整數,因此是整數規劃問題。PuLP提供了整數規劃的
(2)Python 程式設計
ProbLP5 = pulp.LpProblem("ProbLP5", sense=pulp.LpMaximize) # 定義問題 1,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer') # 定義 x1,變數型別:整數
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer') # 定義 x2,變數型別:整數
ProbLP5 += (10 * x1 + 9 * x2) # 設定目標函式 f(x)
ProbLP5 += (6 * x1 + 5 * x2 <= 60) # 不等式約束
ProbLP5 += (10 * x1 + 20 * x2 <= 150) # 不等式約束
ProbLP5.solve()
print(ProbLP5.name) # 輸出求解狀態
print("Status:", pulp.LpStatus[ProbLP5.status]) # 輸出求解狀態
for v in ProbLP5.variables():
print(v.name, "=", v.varValue) # 輸出每個變數的最優值
print("F5(x) =", pulp.value(ProbLP5.objective)) # 輸出最優解的目標函式值
(3)執行結果
ProbLP5
x1=8.0
x2=2.0
F5(X) = 98.0
版權說明:
YouCans 原創作品
Copyright 2021 YouCans, XUPT
Crated:2021-04-30