MySQL資料太多,經常卡死!不想幹了!

Java技術那些事發表於2020-10-11

推薦閱讀:

問題概述

使用阿里雲rds for MySQL資料庫(就是MySQL5.6版本),有個使用者上網記錄表6個月的資料量近2000萬,保留最近一年的資料量達到4000萬,查詢速度極慢,日常卡死。嚴重影響業務。

問題前提:老系統,當時設計系統的人大概是大學沒畢業,表設計和sql語句寫的不僅僅是垃圾,簡直無法直視。原開發人員都已離職,到我來維護,這就是傳說中的維護不了就跑路,然後我就是掉坑的那個!!!

我嘗試解決該問題,so,有個這個日誌。

方案概述

方案一:優化現有mysql資料庫。

優點:不影響現有業務,源程式不需要修改程式碼,成本最低。
缺點:有優化瓶頸,資料量過億就玩完了。

方案二:升級資料庫型別,換一種100%相容mysql的資料庫。

優點:不影響現有業務,源程式不需要修改程式碼,你幾乎不需要做任何操作就能提升資料庫效能。
缺點:多花錢

方案三:一步到位,大資料解決方案,更換newsql/nosql資料庫。

優點:擴充套件性強,成本低,沒有資料容量瓶頸
缺點:需要修改源程式程式碼

以上三種方案,按順序使用即可,資料量在億級別以下的沒必要換nosql,開發成本太高。三種方案我都試了一遍,而且都形成了落地解決方案。該過程心中慰問跑路的那幾個開發者一萬遍 ?

方案一詳細說明:優化現有mysql資料庫

跟阿里雲資料庫大佬電話溝通 and Google解決方案 and 問群裡大佬,總結如下(都是精華):

1.資料庫設計和表建立時就要考慮效能
2.sql的編寫需要注意優化
3.分割槽
4.分表
5.分庫

1.資料庫設計和表建立時就要考慮效能

mysql資料庫本身高度靈活,造成效能不足,嚴重依賴開發人員能力。也就是說開發人員能力高,則mysql效能高。這也是很多關係型資料庫的通病,所以公司的dba通常工資巨高。

設計表時要注意:

1.表欄位避免null值出現,null值很難查詢優化且佔用額外的索引空間,推薦預設數字0代替null。

2.儘量使用INT而非BIGINT,如果非負則加上UNSIGNED(這樣數值容量會擴大一倍),當然能使用TINYINT、SMALLINT、MEDIUM_INT更好。

3.使用列舉或整數代替字串型別

4.儘量使用TIMESTAMP而非DATETIME

5.單表不要有太多欄位,建議在20以內

6.用整型來存IP

索引

1.索引並不是越多越好,要根據查詢有針對性的建立,考慮在WHERE和ORDER BY命令上涉及的列建立索引,可根據EXPLAIN來檢視是否用了索引還是全表掃描

2.應儘量避免在WHERE子句中對欄位進行NULL值判斷,否則將導致引擎放棄使用索引而進行全表掃描

3.值分佈很稀少的欄位不適合建索引,例如"性別"這種只有兩三個值的欄位

4.字元欄位只建字首索引

5.字元欄位最好不要做主鍵

6.不用外來鍵,由程式保證約束

7.儘量不用UNIQUE,由程式保證約束

8.使用多列索引時注意順序和查詢條件保持一致,同時刪除不必要的單列索引

簡言之就是使用合適的資料型別,選擇合適的索引

選擇合適的資料型別
(1)使用可存下資料的最小的資料型別,整型 < date,time < char,varchar < blob
(2)使用簡單的資料型別,整型比字元處理開銷更小,因為字串的比較更復雜。如,int型別儲存時間型別,bigint型別轉ip函式
(3)使用合理的欄位屬性長度,固定長度的表會更快。使用enum、char而不是varchar
(4)儘可能使用not null定義欄位
(5)儘量少用text,非用不可最好分表# 選擇合適的索引列
(1)查詢頻繁的列,在where,group by,order by,on從句中出現的列
(2)where條件中<,<=,=,>,>=,between,in,以及like 字串+萬用字元(%)出現的列
(3)長度小的列,索引欄位越小越好,因為資料庫的儲存單位是頁,一頁中能存下的資料越多越好
(4)離散度大(不同的值多)的列,放在聯合索引前面。檢視離散度,通過統計不同的列值來實現,count越大,離散程度越高:

原開發人員已經跑路,該表早已建立,我無法修改,故:該措辭無法執行,放棄!

2.sql的編寫需要注意優化

1.使用limit對查詢結果的記錄進行限定

2.避免select *,將需要查詢的欄位列出來

3.使用連線(join)來代替子查詢

4.拆分大的delete或insert語句

5.可通過開啟慢查詢日誌來找出較慢的SQL

6.不做列運算:SELECT id WHERE age + 1 = 10,任何對列的操作都將導致表掃描,它包括資料庫教程函式、計算表示式等等,查詢時要儘可能將操作移至等號右邊

7.sql語句儘可能簡單:一條sql只能在一個cpu運算;大語句拆小語句,減少鎖時間;一條大sql可以堵死整個庫

8.OR改寫成IN:OR的效率是n級別,IN的效率是log(n)級別,in的個數建議控制在200以內

9.不用函式和觸發器,在應用程式實現

10.避免%xxx式查詢

11.少用JOIN

12.使用同型別進行比較,比如用’123’和’123’比,123和123比

13.儘量避免在WHERE子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描

14.對於連續數值,使用BETWEEN不用IN:SELECT id FROM t WHERE num BETWEEN 1 AND 5

15.列表資料不要拿全表,要使用LIMIT來分頁,每頁數量也不要太大
“原開發人員已經跑路,程式已經完成上線,我無法修改sql,故:該措辭無法執行,放棄!

引擎

引擎
目前廣泛使用的是MyISAM和InnoDB兩種引擎:
MyISAM
MyISAM引擎是MySQL 5.1及之前版本的預設引擎,它的特點是:

1.不支援行鎖,讀取時對需要讀到的所有表加鎖,寫入時則對錶加排它鎖
2.不支援事務
3.不支援外來鍵
4.不支援崩潰後的安全恢復
5.在表有讀取查詢的同時,支援往表中插入新紀錄
6.支援BLOB和TEXT的前500個字元索引,支援全文索引
7.支援延遲更新索引,極大提升寫入效能
8.對於不會進行修改的表,支援壓縮表,極大減少磁碟空間佔用

InnoDB

InnoDB在MySQL 5.5後成為預設索引,它的特點是:

1.支援行鎖,採用MVCC來支援高併發
2.支援事務
3.支援外來鍵
4.支援崩潰後的安全恢復
5.不支援全文索引

總體來講,MyISAM適合SELECT密集型的表,而InnoDB適合INSERT和UPDATE密集型的表
“MyISAM速度可能超快,佔用儲存空間也小,但是程式要求事務支援,故InnoDB是必須的,故該方案無法執行,放棄!

3.分割槽

MySQL在5.1版引入的分割槽是一種簡單的水平拆分,使用者需要在建表的時候加上分割槽引數,對應用是透明的無需修改程式碼

對使用者來說,分割槽表是一個獨立的邏輯表,但是底層由多個物理子表組成,實現分割槽的程式碼實際上是通過對一組底層表的物件封裝,但對SQL層來說是一個完全封裝底層的黑盒子。MySQL實現分割槽的方式也意味著索引也是按照分割槽的子表定義,沒有全域性索引

使用者的SQL語句是需要針對分割槽表做優化,SQL條件中要帶上分割槽條件的列,從而使查詢定位到少量的分割槽上,否則就會掃描全部分割槽,可以通過EXPLAIN PARTITIONS來檢視某條SQL語句會落在哪些分割槽上,從而進行SQL優化,我測試,查詢時不帶分割槽條件的列,也會提高速度,故該措施值得一試。

分割槽的好處是:

1.可以讓單表儲存更多的資料
2.分割槽表的資料更容易維護,可以通過清除整個分割槽批量刪除大量資料,也可以增加新的分割槽來支援新插入的資料。另外,還可以對一個獨立分割槽進行優化、檢查、修復等操作
3.部分查詢能夠從查詢條件確定只落在少數分割槽上,速度會很快
4.分割槽表的資料還可以分佈在不同的物理裝置上,從而高效利用多個硬體裝置
5.可以使用分割槽表來避免某些特殊瓶頸,例如InnoDB單個索引的互斥訪問、ext3檔案系統的inode鎖競爭
6.可以備份和恢復單個分割槽

分割槽的限制和缺點:

1.一個表最多隻能有1024個分割槽
2.如果分割槽欄位中有主鍵或者唯一索引的列,那麼所有主鍵列和唯一索引列都必須包含進來
3.分割槽表無法使用外來鍵約束
4.NULL值會使分割槽過濾無效
5.所有分割槽必須使用相同的儲存引擎

分割槽的型別:

1.RANGE分割槽:基於屬於一個給定連續區間的列值,把多行分配給分割槽
2.LIST分割槽:類似於按RANGE分割槽,區別在於LIST分割槽是基於列值匹配一個離散值集合中的某個值來進行選擇
3.HASH分割槽:基於使用者定義的表示式的返回值來進行選擇的分割槽,該表示式使用將要插入到表中的這些行的列值進行計算。這個函式可以包含MySQL中有效的、產生非負整數值的任何表示式
4.KEY分割槽:類似於按HASH分割槽,區別在於KEY分割槽只支援計算一列或多列,且MySQL伺服器提供其自身的雜湊函式。必須有一列或多列包含整數值
5.具體關於mysql分割槽的概念請自行google或查詢官方文件,我這裡只是拋磚引玉了。
“我首先根據月份把上網記錄表RANGE分割槽了12份,查詢效率提高6倍左右,效果不明顯,故:換id為HASH分割槽,分了64個分割槽,查詢速度提升顯著。問題解決!

結果如下:PARTITION BY HASH (id)PARTITIONS 64
select count() from readroom_website; --11901336行記錄
/ 受影響行數: 0 已找到記錄: 1 警告: 0 持續時間 1 查詢: 5.734 sec. /
select * from readroom_website where month(accesstime) =11 limit 10;
/ 受影響行數: 0 已找到記錄: 10 警告: 0 持續時間 1 查詢: 0.719 sec. */

4.分表

分表就是把一張大表,按照如上過程都優化了,還是查詢卡死,那就把這個表分成多張表,把一次查詢分成多次查詢,然後把結果組合返回給使用者。

分表分為垂直拆分和水平拆分,通常以某個欄位做拆分項。比如以id欄位拆分為100張表:表名為 tableName_id%100

但:分表需要修改源程式程式碼,會給開發帶來大量工作,極大的增加了開發成本,故:只適合在開發初期就考慮到了大量資料存在,做好了分表處理,不適合應用上線了再做修改,成本太高!!!而且選擇這個方案,都不如選擇我提供的第二第三個方案的成本低!故不建議採用。

5.分庫

把一個資料庫分成多個,建議做個讀寫分離就行了,真正的做分庫也會帶來大量的開發成本,得不償失!不推薦使用。

方案二詳細說明:升級資料庫,換一個100%相容mysql的資料庫

mysql效能不行,那就換個。為保證源程式程式碼不修改,保證現有業務平穩遷移,故需要換一個100%相容mysql的資料庫。

開源選擇

1.tiDB https://github.com/pingcap/tidb
2.Cubrid https://www.cubrid.org/
3.開源資料庫會帶來大量的運維成本且其工業品質和MySQL尚有差距,有很多坑要踩,如果你公司要求必須自建資料庫,那麼選擇該型別產品。

雲資料選擇

1.阿里雲POLARDB
2.https://www.aliyun.com/product/polardb?spm=a2c4g.11174283.cloudEssentials.47.7a984b5cS7h4wH
“官方介紹語:POLARDB 是阿里雲自研的下一代關係型分散式雲原生資料庫,100%相容MySQL,儲存容量最高可達 100T,效能最高提升至 MySQL 的 6 倍。POLARDB 既融合了商業資料庫穩定、可靠、高效能的特徵,又具有開源資料庫簡單、可擴充套件、持續迭代的優勢,而成本只需商用資料庫的 1/10。
我開通測試了一下,支援免費mysql的資料遷移,無操作成本,效能提升在10倍左右,價格跟rds相差不多,是個很好的備選解決方案!

1.阿里雲OcenanBase
2.淘寶使用的,扛得住雙十一,效能卓著,但是在公測中,我無法嘗試,但值得期待
3.阿里雲HybridDB for MySQL (原PetaData)
4.https://www.aliyun.com/product/petadata?spm=a2c4g.11174283.cloudEssentials.54.7a984b5cS7h4wH
“官方介紹:雲資料庫HybridDB for MySQL (原名PetaData)是同時支援海量資料線上事務(OLTP)和線上分析(OLAP)的HTAP(Hybrid Transaction/Analytical Processing)關係型資料庫。

我也測試了一下,是一個olap和oltp相容的解決方案,但是價格太高,每小時高達10塊錢,用來做儲存太浪費了,適合儲存和分析一起用的業務。

1.騰訊雲DCDB
2.https://cloud.tencent.com/product/dcdb_for_tdsql
“官方介紹:DCDB又名TDSQL,一種相容MySQL協議和語法,支援自動水平拆分的高效能分散式資料庫——即業務顯示為完整的邏輯表,資料卻均勻的拆分到多個分片中;每個分片預設採用主備架構,提供災備、恢復、監控、不停機擴容等全套解決方案,適用於TB或PB級的海量資料場景。
騰訊的我不喜歡用,不多說。原因是出了問題找不到人,線上問題無法解決頭疼!但是他價格便宜,適合超小公司,玩玩。

方案三詳細說明:去掉mysql,換大資料引擎處理資料

資料量過億了,沒得選了,只能上大資料了。

開源解決方案

hadoop家族。hbase/hive懟上就是了。但是有很高的運維成本,一般公司是玩不起的,沒十萬投入是不會有很好的產出的!

雲解決方案

這個就比較多了,也是一種未來趨勢,大資料由專業的公司提供專業的服務,小公司或個人購買服務,大資料就像水/電等公共設施一樣,存在於社會的方方面面。

國內做的最好的當屬阿里雲。

我選擇了阿里雲的MaxCompute配合DataWorks,使用超級舒服,按量付費,成本極低。

MaxCompute可以理解為開源的Hive,提供sql/mapreduce/ai演算法/python指令碼/shell指令碼等方式運算元據,資料以表格的形式展現,以分散式方式儲存,採用定時任務和批處理的方式處理資料。DataWorks提供了一種工作流的方式管理你的資料處理任務和排程監控。

當然你也可以選擇阿里雲hbase等其他產品,我這裡主要是離線處理,故選擇MaxCompute,基本都是圖形介面操作,大概寫了300行sql,費用不超過100塊錢就解決了資料處理問題。

相關文章