YOLO 演算法是非常著名的目標檢測演算法。從其全稱 You Only Look Once: Unified, Real-Time Object Detection ,可以看出它的特性:
- Look Once: one-stage (one-shot object detectors) 演算法,把目標檢測的兩個任務分類和定位一步完成。
- Unified: 統一的架構,提供 end-to-end 的訓練和預測。
- Real-Time: 實時性,初代論文給出的指標 FPS 45 , mAP 63.4 。
YOLOv4: Optimal Speed and Accuracy of Object Detection ,於今年 4 月公佈,採用了很多近些年 CNN 領域優秀的優化技巧。其平衡了精度與速度,目前在實時目標檢測演算法中精度是最高的。
論文地址:
- YOLO: https://arxiv.org/abs/1506.02640
- YOLO v4: https://arxiv.org/abs/2004.10934
原始碼地址:
本文將介紹 YOLOv4 官方 Darknet 實現,如何於 Docker 編譯使用。以及從 MS COCO 2017 資料集中怎麼選出部分物體,訓練出模型。
主要內容有:
- 準備 Docker 映象
- 準備 COCO 資料集
- 用預訓練模型進行推斷
- 準備 COCO 資料子集
- 訓練自己的模型並推斷
- 參考內容
準備 Docker 映象
首先,準備 Docker ,請見:Docker: Nvidia Driver, Nvidia Docker 推薦安裝步驟 。
之後,開始準備映象,從下到上的層級為:
- nvidia/cuda: https://hub.docker.com/r/nvidia/cuda
- OpenCV: https://github.com/opencv/opencv
- Darknet: https://github.com/AlexeyAB/darknet
nvidia/cuda
準備 Nvidia 基礎 CUDA 映象。這裡我們選擇 CUDA 10.2 ,不用最新 CUDA 11,因為現在 PyTorch 等都還都是 10.2 呢。
拉取映象:
docker pull nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04
測試映象:
$ docker run --gpus all nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04 nvidia-smi
Sun Aug 8 00:00:00 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 208... Off | 00000000:07:00.0 On | N/A |
| 0% 48C P8 14W / 300W | 340MiB / 11016MiB | 2% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce RTX 208... Off | 00000000:08:00.0 Off | N/A |
| 0% 45C P8 19W / 300W | 1MiB / 11019MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
OpenCV
基於 nvidia/cuda 映象,構建 OpenCV 的映象:
cd docker/ubuntu18.04-cuda10.2/opencv4.4.0/
docker build \
-t joinaero/ubuntu18.04-cuda10.2:opencv4.4.0 \
--build-arg opencv_ver=4.4.0 \
--build-arg opencv_url=https://gitee.com/cubone/opencv.git \
--build-arg opencv_contrib_url=https://gitee.com/cubone/opencv_contrib.git \
.
其 Dockerfile 可見這裡: https://github.com/ikuokuo/start-yolov4/blob/master/docker/ubuntu18.04-cuda10.2/opencv4.4.0/Dockerfile 。
Darknet
基於 OpenCV 映象,構建 Darknet 映象:
cd docker/ubuntu18.04-cuda10.2/opencv4.4.0/darknet/
docker build \
-t joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet \
.
其 Dockerfile 可見這裡: https://github.com/ikuokuo/start-yolov4/blob/master/docker/ubuntu18.04-cuda10.2/opencv4.4.0/darknet/Dockerfile 。
上述映象已上傳 Docker Hub 。如果 Nvidia 驅動能夠支援 CUDA 10.2 ,那可以直接拉取該映象:
docker pull joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet
準備 COCO 資料集
MS COCO 2017 下載地址: http://cocodataset.org/#download
影像,包括:
- 2017 Train images [118K/18GB]
- 2017 Val images [5K/1GB]
- 2017 Test images [41K/6GB]
- 2017 Unlabeled images [123K/19GB]
標註,包括:
- 2017 Train/Val annotations [241MB]
- 2017 Stuff Train/Val annotations [1.1GB]
- 2017 Panoptic Train/Val annotations [821MB]
- 2017 Testing Image info [1MB]
- 2017 Unlabeled Image info [4MB]
用預訓練模型進行推斷
預訓練模型 yolov4.weights ,下載地址 https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights 。
執行映象:
xhost +local:docker
docker run -it --gpus all \
-e DISPLAY \
-e QT_X11_NO_MITSHM=1 \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-v $HOME/.Xauthority:/root/.Xauthority \
--name darknet \
--mount type=bind,source=$HOME/Codes/devel/datasets/coco2017,target=/home/coco2017 \
--mount type=bind,source=$HOME/Codes/devel/models/yolov4,target=/home/yolov4 \
joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet
進行推斷:
./darknet detector test cfg/coco.data cfg/yolov4.cfg /home/yolov4/yolov4.weights \
-thresh 0.25 -ext_output -show -out /home/coco2017/result.json \
/home/coco2017/test2017/000000000001.jpg
推斷結果:
準備 COCO 資料子集
MS COCO 2017 資料集有 80 個物體標籤。我們從中選取自己關注的物體,重組個子資料集。
首先,獲取樣例程式碼:
git clone https://github.com/ikuokuo/start-yolov4.git
- scripts/coco2yolo.py: COCO 資料集轉 YOLO 資料集的指令碼
- scripts/coco/label.py: COCO 資料集的物體標籤有哪些
- cfg/coco/coco.names: 編輯我們想要的那些物體標籤
之後,準備資料集:
cd start-yolov4/
pip install -r scripts/requirements.txt
export COCO_DIR=$HOME/Codes/devel/datasets/coco2017
# train
python scripts/coco2yolo.py \
--coco_img_dir $COCO_DIR/train2017/ \
--coco_ann_file $COCO_DIR/annotations/instances_train2017.json \
--yolo_names_file ./cfg/coco/coco.names \
--output_dir ~/yolov4/coco2017/ \
--output_name train2017 \
--output_img_prefix /home/yolov4/coco2017/train2017/
# valid
python scripts/coco2yolo.py \
--coco_img_dir $COCO_DIR/val2017/ \
--coco_ann_file $COCO_DIR/annotations/instances_val2017.json \
--yolo_names_file ./cfg/coco/coco.names \
--output_dir ~/yolov4/coco2017/ \
--output_name val2017 \
--output_img_prefix /home/yolov4/coco2017/val2017/
資料集,內容如下:
~/yolov4/coco2017/
├── train2017/
│ ├── 000000000071.jpg
│ ├── 000000000071.txt
│ ├── ...
│ ├── 000000581899.jpg
│ └── 000000581899.txt
├── train2017.txt
├── val2017/
│ ├── 000000001353.jpg
│ ├── 000000001353.txt
│ ├── ...
│ ├── 000000579818.jpg
│ └── 000000579818.txt
└── val2017.txt
訓練自己的模型並推斷
準備必要檔案
-
cfg/coco/coco.names <cfg/coco/coco.names.bak has original 80 objects>
- Edit: keep desired objects
-
cfg/coco/yolov4.cfg <cfg/coco/yolov4.cfg.bak is original file>
- Download yolov4.cfg, then changed:
batch
=64,subdivisions
=32 <32 for 8-12 GB GPU-VRAM>width
=512,height
=512 <any value multiple of 32>classes
=<your number of objects in each of 3 [yolo]-layers>max_batches
=<classes*2000, but not less than number of training images and not less than 6000>steps
=<max_batches*0.8, max_batches*0.9>filters
=<(classes+5)x3, in the 3 [convolutional] before each [yolo] layer>filters
=<(classes+9)x3, in the 3 [convolutional] before each [Gaussian_yolo] layer>
-
- Edit:
train
,valid
to YOLO datas
- Edit:
-
csdarknet53-omega.conv.105
- Download csdarknet53-omega_final.weights, then run:
docker run -it --rm --gpus all \ --mount type=bind,source=$HOME/Codes/devel/models/yolov4,target=/home/yolov4 \ joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet ./darknet partial cfg/csdarknet53-omega.cfg /home/yolov4/csdarknet53-omega_final.weights /home/yolov4/csdarknet53-omega.conv.105 105
訓練自己的模型
執行映象:
cd start-yolov4/
xhost +local:docker
docker run -it --gpus all \
-e DISPLAY \
-e QT_X11_NO_MITSHM=1 \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-v $HOME/.Xauthority:/root/.Xauthority \
--name darknet \
--mount type=bind,source=$HOME/Codes/devel/models/yolov4,target=/home/yolov4 \
--mount type=bind,source=$HOME/yolov4/coco2017,target=/home/yolov4/coco2017 \
--mount type=bind,source=$PWD/cfg/coco,target=/home/cfg \
joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet
進行訓練:
mkdir -p /home/yolov4/coco2017/backup
# Training command
./darknet detector train /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/csdarknet53-omega.conv.105 -map
中途可以中斷訓練,然後這樣繼續:
# Continue training
./darknet detector train /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_last.weights -map
yolov4_last.weights
每迭代 100 次,會被記錄。
如果多 GPU 訓練,可以在 1000 次迭代後,加引數 -gpus 0,1
,再繼續:
# How to train with multi-GPU
# 1. Train it first on 1 GPU for like 1000 iterations
# 2. Then stop and by using partially-trained model `/backup/yolov4_1000.weights` run training with multigpu
./darknet detector train /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_1000.weights -gpus 0,1 -map
訓練過程,記錄如下:
加引數 -map
後,上圖會顯示有紅線 mAP
。
檢視模型 mAP@IoU=50 精度:
$ ./darknet detector map /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_final.weights
...
Loading weights from /home/yolov4/coco2017/backup/yolov4_final.weights...
seen 64, trained: 384 K-images (6 Kilo-batches_64)
Done! Loaded 162 layers from weights-file
calculation mAP (mean average precision)...
Detection layer: 139 - type = 27
Detection layer: 150 - type = 27
Detection layer: 161 - type = 27
160
detections_count = 745, unique_truth_count = 190
class_id = 0, name = train, ap = 80.61% (TP = 142, FP = 18)
for conf_thresh = 0.25, precision = 0.89, recall = 0.75, F1-score = 0.81
for conf_thresh = 0.25, TP = 142, FP = 18, FN = 48, average IoU = 75.31 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.806070, or 80.61 %
Total Detection Time: 4 Seconds
進行推斷:
./darknet detector test /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_final.weights \
-ext_output -show /home/yolov4/coco2017/val2017/000000006040.jpg
推斷結果:
參考內容
- Train Detector on MS COCO (trainvalno5k 2014) dataset
- How to evaluate accuracy and speed of YOLOv4
- How to train (to detect your custom objects)
結語
為什麼用 Docker ? Docker 匯出映象,可簡化環境部署。如 PyTorch 也都有映象,可以直接上手使用。
關於 Darknet 還有什麼? 下回介紹 Darknet 於 Ubuntu 編譯,及使用 Python 介面 。
Let's go coding ~