說說Darknet 如何和QT qtcreator配置使用
說說Darknet 如何和QT qtcreator配置使用;
darknet yolov系列讓作視覺工程的C++程式設計師喜不自勝!為啥?終於不用額外研究python也可玩轉AI影像識別了,而且嵌入式友好、靈活、可擴充套件。感謝darknet的創作者,無私的提供給工程技術人員。
這裡記錄以下自己使用的點滴經驗,幫助尚未掌握的同行更容易把握這個好用AI影像識別引擎。
1、darknet編譯,都好說,網路上已經介紹的很清楚了,這裡不再贅述,至於你要用哪個版本,這裡還是推薦https://github.com/AlexeyAB/darknet
2、這個版本有windows/linux的,我主要介紹使用ubuntu18.04的吧,按照你是否安裝CUDNN和電腦的硬體配置修改makefile;然後生成libdarknet.so檔案。
3、其實darknet自帶的有libdarknet.so怎麼用的example樣例程式碼,就在yolo_console_dll.cpp 幾乎相關的API使用都示範,如果大家工程化應用darknet yolov*就可以參考這個檔案。
4、廢話少說,上程式碼,真刀真槍!首先宣告,你已經新建了qtcreator 工程,把下面程式碼直接拷貝即可;
#include <QCoreApplication>
#define GPU
#define OPENCV
#include <iostream>
#include <fstream>
#include <QDebug>
#include <opencv2/opencv.hpp>
#include <include/yolo_v2_class.hpp>
#include <include/darknet.h>
std::vector<std::string> objects_names_from_file(std::string const filename) {
std::ifstream file(filename);
std::vector<std::string> file_lines;
if (!file.is_open()) return file_lines;
for(std::string line; getline(file, line);) file_lines.push_back(line);
std::cout << "object names loaded \n";
return file_lines;
}
void draw_boxes(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names,
int current_det_fps = -1, int current_cap_fps = -1)
{
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
for (auto &i : result_vec) {
cv::Scalar color = obj_id_to_color(i.obj_id);
cv::rectangle(mat_img, cv::Rect(i.x, i.y, i.w, i.h), color, 2);
if (obj_names.size() > i.obj_id) {
std::string obj_name = obj_names[i.obj_id];
if (i.track_id > 0) obj_name += " - " + std::to_string(i.track_id);
cv::Size const text_size = getTextSize(obj_name, cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, 2, 0);
int max_width = (text_size.width > i.w + 2) ? text_size.width : (i.w + 2);
max_width = std::max(max_width, (int)i.w + 2);
//max_width = std::max(max_width, 283);
std::string coords_3d;
if (!std::isnan(i.z_3d)) {
std::stringstream ss;
ss << std::fixed << std::setprecision(2) << "x:" << i.x_3d << "m y:" << i.y_3d << "m z:" << i.z_3d << "m ";
coords_3d = ss.str();
cv::Size const text_size_3d = getTextSize(ss.str(), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, 1, 0);
int const max_width_3d = (text_size_3d.width > i.w + 2) ? text_size_3d.width : (i.w + 2);
if (max_width_3d > max_width) max_width = max_width_3d;
}
cv::rectangle(mat_img, cv::Point2f(std::max((int)i.x - 1, 0), std::max((int)i.y - 35, 0)),
cv::Point2f(std::min((int)i.x + max_width, mat_img.cols - 1), std::min((int)i.y, mat_img.rows - 1)),
color, CV_FILLED, 8, 0);
putText(mat_img, obj_name, cv::Point2f(i.x, i.y - 16), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(0, 0, 0), 2);
if(!coords_3d.empty()) putText(mat_img, coords_3d, cv::Point2f(i.x, i.y-1), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
}
}
if (current_det_fps >= 0 && current_cap_fps >= 0) {
std::string fps_str = "FPS detection: " + std::to_string(current_det_fps) + " FPS capture: " + std::to_string(current_cap_fps);
putText(mat_img, fps_str, cv::Point2f(10, 20), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(50, 255, 0), 2);
}
}
int main()
{
//獲取使用GPU的指定ID
gpu_index = 0;
//#define GPU
#ifndef GPU
gpu_index = -1;
#else
if(gpu_index >= 0){
cuda_set_device(gpu_index);
}
#endif
//初始化相機
/// \brief mtwoCamera
///
///
cv::VideoCapture video;
int cameraWidth=320;
int cameraHeight=480;
video.open(0);
video.set(CV_CAP_PROP_FRAME_WIDTH, cameraWidth*2);//寬度
video.set(CV_CAP_PROP_FRAME_HEIGHT, cameraHeight);//高度
video.set(CV_CAP_PROP_FPS, 30);//幀率 幀/秒
video.set(CV_CAP_PROP_BRIGHTNESS, 1);//亮度 1
video.set(CV_CAP_PROP_CONTRAST,40);//對比度 40
video.set(CV_CAP_PROP_SATURATION, 50);//飽和度 50
video.set(CV_CAP_PROP_HUE, 50);//色調 50
video.set(CV_CAP_PROP_EXPOSURE, 50);//曝光 50
if( !video.isOpened() )
{
printf("Read Video failed!\n");
return 0;
}
cv::Mat frame;
bool iscla=false;
std::string cfg_file = "/home/sunkit/Qtkit/DarknetConsol/darknet-master/cfg/yolov4.cfg";
std::string weights_file = "/home/sunkit/Qtkit/DarknetConsol/darknet-master/yolov4.weights";
std::string names_file = "/home/sunkit/Qtkit/DarknetConsol/darknet-master/data/coco.names";
std::string filename = "/home/sunkit/Qtkit/DarknetConsol/darknet-master/data/dog.jpg";
Detector detector(cfg_file, weights_file);
auto obj_names = objects_names_from_file(names_file);
std::cout << "input image or video filename: ";
while (true)
{
// mtwoCamera.getCamFramfirst();
//grab and retrieve each frames of the video sequentially
video >> frame;
if( frame.empty() )
{
std::cout << "frame empty"<<std::endl;
break;
}
//wait for 40 milliseconds
int c = cvWaitKey(40);
//exit the loop if user press "Esc" key (ASCII value of "Esc" is 27)
if (27 == char(c)) break;
if(char(c)=='c')//標定計算
{
iscla=!iscla;
}
cv::Mat mat_img =frame;
if(iscla)
{
auto det_image = detector.mat_to_image_resize(mat_img);
//std::cout << det_image->w << std::endl;
//std::cout << det_image->h << std::endl;
// std::cout << mat_img.size()<< std::endl;
double timeConsume,start;
start = static_cast<double>(cv::getTickCount());
std::vector<bbox_t> result_vec = detector.detect_resized(*det_image, mat_img.size().width, mat_img.size().height,0.4);
timeConsume = ((double)cv::getTickCount() - start)*1000 / cv::getTickFrequency();
// qDebug()<<"time count:"<<timeConsume<<endl;
draw_boxes(mat_img, result_vec, obj_names);
}
cv::imshow("frame",mat_img);
}
}
5、效果如下,效果喜人,這也告訴大家AI 還是個什麼程度呢?各位都有自己的見解。
6、qtcreator 工程配置環境,沒有這個配置環境就是純耍帥,不實在。
QT -= gui
CONFIG += c++11 console
CONFIG -= app_bundle
# The following define makes your compiler emit warnings if you use
# any Qt feature that has been marked deprecated (the exact warnings
# depend on your compiler). Please consult the documentation of the
# deprecated API in order to know how to port your code away from it.
DEFINES += QT_DEPRECATED_WARNINGS
# You can also make your code fail to compile if it uses deprecated APIs.
# In order to do so, uncomment the following line.
# You can also select to disable deprecated APIs only up to a certain version of Qt.
#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000 # disables all the APIs deprecated before Qt 6.0.0
SOURCES += \
main.cpp
# Default rules for deployment.
qnx: target.path = /tmp/$${TARGET}/bin
else: unix:!android: target.path = /opt/$${TARGET}/bin
!isEmpty(target.path): INSTALLS += target
unix: CONFIG += link_pkgconfig
unix: PKGCONFIG += /usr/local/lib/pkgconfig/opencv.pc
#CUDA
DEFINES += GPU CUDNN
LIBS += \
-L"/usr/local/lib" \
-L"/usr/local/cuda/lib64" \
-lcudart -lcufft
DEPENDPATH += .
INCLUDEPATH += /usr/local/cuda/include
QMAKE_LIBDIR += /usr/local/cuda/lib64
CUDA_DIR = /usr/local/cuda
CUDA_SDK = /usr/local/cuda
SYSTEM_NAME = linux
SYSTEM_TYPE = 64
CUDA_ARCH = compute_61
CUDA_CODE = [sm_61,compute_61]
CUDA_OBJECTS_DIR = ./Release/obj
CUDA_LIBS = cudart cufft
CUDA_INC = $$join(INCLUDEPATH,'" -I"','-I"','"')
NVCC_OPTIONS = --use_fast_math
NVCC_LIBS = $$join(CUDA_LIBS,' -l','-l','')
CONFIG(Release){
cuda.input = CUDA_SOURCES
cuda.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
cuda.commands = $$CUDA_DIR/bin/nvcc $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -O3 -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
cuda.dependency_type = TYPE_C
QMAKE_EXTRA_COMPILERS += cuda
}
win32:CONFIG(release, debug|release): LIBS += -L$$PWD/./release/ -ldarknet
else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/./debug/ -ldarknet
else:unix: LIBS += -L$$PWD/./ -ldarknet
INCLUDEPATH += $$PWD/.
DEPENDPATH += $$PWD/.
結語:
有時候你會遇見darknet 無法執行,無厘頭阿,怎麼回事呢,這個就要深入瞭解了,比如你的深度模型網路檔案開頭沒有改為如下:
[net]
#batch=64
#subdivisions=8
batch=1
subdivisions=1
# Training
#width=512
#height=512
width=416
height=416
channels=3
注意:如果你的膝上型電腦顯示卡記憶體不大於6G,建議使用416,不多解釋。
相關文章
- Qt ——被裁之說QT
- qtCreator中配置opencv和mingwQTOpenCV
- 說說如何使用 vue-router 外掛Vue
- 說說如何使用 Python 類的屬性Python
- 說說在 Spring 中,如何基於 XML 來配置事務SpringXML
- 說說如何使用 Spring Security 保護 web 請求SpringWeb
- 【MySQL】SemisynchronousReplication配置和引數說明MySql
- 說說我和Mac(二)Mac
- 說說我和Mac(一)Mac
- 簡單說說webpack的配置檔案Web
- 說說如何使用 vue-router 實現頁面跳轉Vue
- 說說如何使用 Vue.js 開發購物車功能Vue.js
- Kafka配置說明Kafka
- FTP配置說明FTP
- rust配置說明Rust
- 說一說V-Layout框架的原理和使用場景框架
- 【MySQL】Semisynchronous Replication 配置和引數說明MySql
- Qt/C++編寫的mqtt除錯助手使用說明QTC++MQ除錯
- vue-cli@3.0 使用及配置說明Vue
- 說說JSON和JSONPJSON
- 說說Golang的使用心得Golang
- 不聊webpack配置,來說說它的原理Web
- 說說如何在 Spring Boot 中使用 JdbcTemplate 讀寫資料Spring BootJDBC
- QT下的darknet-GPU專案屬性QTGPU
- 如何理解CDN?說說實現原理?
- Spring配置說明Spring
- 說說我眼中的Vue和ReactVueReact
- 說說三層架構和MVC架構MVC
- 嘗試說一說事件的使用事件
- java WebSocket 即時通訊配置使用說明JavaWeb
- 使用說明
- Webots和ROS的使用說明(譯)WebROS
- Oracle Audit 功能的使用和說明Oracle
- 關於DOCTYPE的使用和說明
- 說說如何實現一個模板引擎
- spring5.x版本 java配置和annotation配置說明SpringJava
- Qt - 原始碼跟蹤一個QtCreator就夠了QT原始碼
- 3568F-Qt工程編譯說明QT編譯