一切都起源於一次Fabric上的crash分析。
Crash Log
Fabric上突然出現一些下載業務使用GCD group引發的crash,如下:
#0. Crashed: com.apple.main-thread
0 libdispatch.dylib 0x192759b3c dispatch_group_leave.cold.1 + 36
1 libdispatch.dylib 0x19272ad84 _dispatch_group_wake + 114
2 MTXX 0x103be1af8 __38-[xxxxxx downloadCompletion]_block_invoke + 108 (xxxxxx.m:108)
3 libdispatch.dylib 0x192728b7c _dispatch_call_block_and_release + 32
4 libdispatch.dylib 0x192729fd8 _dispatch_client_callout + 20
5 libdispatch.dylib 0x192735cc8 _dispatch_main_queue_callback_4CF + 968
6 CoreFoundation 0x1929ffcc8 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__ + 16
7 CoreFoundation 0x1929faa24 __CFRunLoopRun + 1980
8 CoreFoundation 0x1929f9f40 CFRunLoopRunSpecific + 480
9 GraphicsServices 0x19cc8a534 GSEventRunModal + 108
10 UIKitCore 0x196b85580 UIApplicationMain + 1940
11 MTXX 0x105c6af10 main + 16 (main.m:16)
12 libdyld.dylib 0x192878e18 start + 4
複製程式碼
憑藉以前的經驗,這顯然是GCD group的enter/leave沒有匹配引發的問題。dispatch_group_enter函式已經明確說了要跟dispatch_group_leave成對使用。
/*!
* @function dispatch_group_enter
*
* @abstract
* Manually indicate a block has entered the group
*
* @discussion
* Calling this function indicates another block has joined the group through
* a means other than dispatch_group_async(). Calls to this function must be
* balanced with dispatch_group_leave().
*
* @param group
* The dispatch group to update.
* The result of passing NULL in this parameter is undefined.
*/
API_AVAILABLE(macos(10.6), ios(4.0))
DISPATCH_EXPORT DISPATCH_NONNULL_ALL DISPATCH_NOTHROW
void
dispatch_group_enter(dispatch_group_t group);
複製程式碼
第一次分析
那麼,經過仔細的review,發現確實有一處漏洞可能導致dispatch_group_leave不執行。程式碼邏輯大概如下,僅列出了本文可能相關的部分虛擬碼:
- (void)downloadURLs:(NSURL *)urls finishCompletion:(void(^)(NSURL *URL))finishCompletion {
dispatch_group_t dispatchGroup = dispatch_group_create();
for (NSURL *url in urls) {
dispatch_group_enter(dispatchGroup);
[self downloadURL:url finishCompletion:^(NSURL *url, BOOL isSuccess) {
// 下載成功與否的邏輯程式碼
// xxxxx
dispatch_group_leave(dispatchGroup);
}];
}
dispatch_group_notify(dispatchGroup, dispatch_get_main_queue(), ^{
if (finishCompletion) {
finishCompletion();
}
});
}
- (void)downloadURL:(NSURL *)url finishCompletion:(void(^)(NSURL *URL, BOOL isSuccess))finishCompletion {
// 各種邏輯,if-else判斷等。。。專案程式碼比較久了的原因。
// 其中有一個暫停任務的判斷,大概程式碼如下:
DownloadItem *downloadItem = [self downloadItemForURL:url];
if (downloadItem正在暫停) {
// 繼續下載操作
return;
}
// xxxxxx
// 觸發實際的下載操作
}
複製程式碼
注意,因為程式碼比較久的原因,執行繼續下載操作的時候,並未將finishCompletion傳遞,因此finishCompletion也就沒有機會執行了。所以導致group的enter/leave不匹配,修改程式碼如下:
if (downloadItem正在暫停) {
// 繼續下載操作
downloadItem.finishCompletion = finishCompletion;
return;
}
複製程式碼
一番探索
改了之後,心裡卻依然感覺不太踏實,果真就是這樣修改的麼?
仔細思考這一番解釋:
dispatch_group_enter: Calling this function indicates another block has joined the group through a means other than dispatch_group_async(). Calls to this function must be balanced with dispatch_group_leave().
也沒說缺少dispatch_group_leave就會導致崩潰?那就用程式碼來試一試:
試驗程式碼
缺少dispatch_group_leave
- (void)group_leave_not_crash_1 {
dispatch_group_t group = dispatch_group_create();
dispatch_group_enter(group);
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"global_queue block 1");
});
dispatch_group_enter(group);
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"global_queue block 2");
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"dispatch_group_notify");
});
NSLog(@"done");
}
複製程式碼
輸出:
done
global_queue block 1
global_queue block 2
複製程式碼
並未發生崩潰。啪啪打臉的聲音倒是有的。
缺少dispatch_group_enter
- (void)group_leave_crash {
dispatch_group_t group = dispatch_group_create();
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"dispatch_group_notify main_queue block 1");
dispatch_group_leave(group);
});
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"dispatch_group_notify main_queue block 2");
dispatch_group_leave(group);
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"dispatch_group_notify");
});
NSLog(@"done");
}
複製程式碼
兩句過度呼叫dispatch_group_leave的地方都會導致崩潰。
dispatch_group_enter與dispatch_group_leave不嚴格匹配
- (void)group_leave_not_crash_2 {
dispatch_group_t group = dispatch_group_create();
dispatch_group_enter(group);
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"global_queue block 1");
});
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"global_queue block 2");
dispatch_group_leave(group);
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"dispatch_group_notify");
});
NSLog(@"done");
}
- (void)group_leave_not_crash_3 {
dispatch_group_t group = dispatch_group_create();
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"global_queue block 1");
dispatch_group_leave(group);
});
dispatch_group_enter(group);
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"global_queue block 2");
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"dispatch_group_notify");
});
NSLog(@"done");
}
複製程式碼
輸出結果都是:
done
global_queue block 1
global_queue block 2
dispatch_group_notify
複製程式碼
dispatch_group_enter與dispatch_group_leave並未嚴格地一一對應,但dispatch_group_notify的那個notification block成功執行了。這個有點奇怪。。。
結論
- 僅有dispatch_group_enter,缺少dispatch_group_leave,不會有問題
- 缺少dispatch_group_enter,執行dispatch_group_leave,直接導致崩潰
- dispatch_group_enter與dispatch_group_leave不嚴格匹配,但是個數匹配,不會有問題
libdispatch的原始碼解析
分析崩潰堆疊
缺少dispatch_group_enter的那個demo,是在dispatch_group_leave(group);那一行直接導致的崩潰:Thread 1: EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)。如果列印group物件,為 <OS_dispatch_group: group[0x600001088190] = { xref = 1, ref = 1, count = 1073741823, gen = 0, waiters = 0, notifs = 0 }> 。
看一看呼叫堆疊:
0x108e8fb30 <+0>: pushq %rbp
0x108e8fb31 <+1>: movq %rsp, %rbp
0x108e8fb34 <+4>: subq $0x20, %rsp
0x108e8fb38 <+8>: movq %rdi, -0x8(%rbp)
0x108e8fb3c <+12>: movq %rsi, -0x10(%rbp)
0x108e8fb40 <+16>: callq 0x108e900a8 ; symbol stub for: dispatch_group_create
0x108e8fb45 <+21>: movq %rax, -0x18(%rbp)
0x108e8fb49 <+25>: movq -0x18(%rbp), %rdi
0x108e8fb4d <+29>: callq 0x108e900b4 ; symbol stub for: dispatch_group_leave
-> 0x108e8fb52 <+34>: xorl %ecx, %ecx
0x108e8fb54 <+36>: movl %ecx, %esi
0x108e8fb56 <+38>: leaq -0x18(%rbp), %rax
0x108e8fb5a <+42>: movq %rax, %rdi
0x108e8fb5d <+45>: callq 0x108e900f6 ; symbol stub for: objc_storeStrong
0x108e8fb62 <+50>: addq $0x20, %rsp
0x108e8fb66 <+54>: popq %rbp
0x108e8fb67 <+55>: retq
複製程式碼
libdispatch.dylib`dispatch_group_leave:
0x10f528955 <+0>: movl $0x4, %eax
0x10f52895a <+5>: lock
0x10f52895b <+6>: xaddq %rax, 0x30(%rdi)
0x10f528960 <+11>: cmpl $-0x4, %eax
0x10f528963 <+14>: jae 0x10f52896d ; <+24>
0x10f528965 <+16>: andl $-0x4, %eax
0x10f528968 <+19>: testl %eax, %eax
0x10f52896a <+21>: je 0x10f5289a3 ; <+78>
0x10f52896c <+23>: retq
0x10f52896d <+24>: addq $0x4, %rax
0x10f528971 <+28>: movq %rax, %rsi
0x10f528974 <+31>: movq %rax, %rcx
0x10f528977 <+34>: andq $-0x4, %rcx
0x10f52897b <+38>: testl $0xfffffffc, %esi ; imm = 0xFFFFFFFC
0x10f528981 <+44>: cmovneq %rax, %rcx
0x10f528985 <+48>: andq $-0x3, %rcx
0x10f528989 <+52>: cmpq %rcx, %rax
0x10f52898c <+55>: je 0x10f528999 ; <+68>
0x10f52898e <+57>: movq %rsi, %rax
0x10f528991 <+60>: lock
0x10f528992 <+61>: cmpxchgq %rcx, 0x30(%rdi)
0x10f528997 <+66>: jne 0x10f528971 ; <+28>
0x10f528999 <+68>: movl $0x1, %edx
0x10f52899e <+73>: jmp 0x10f5289af ; _dispatch_group_wake
0x10f5289a3 <+78>: pushq %rbp
0x10f5289a4 <+79>: movq %rsp, %rbp
0x10f5289a7 <+82>: movq %rax, %rdi
0x10f5289aa <+85>: callq 0x10f55a66d ; dispatch_group_leave.cold.1
複製程式碼
libdispatch.dylib`dispatch_group_leave.cold.1:
0x10f55a66d <+0>: movq %rdi, %rax
0x10f55a670 <+3>: leaq 0x5bd6(%rip), %rcx ; "BUG IN CLIENT OF LIBDISPATCH: Unbalanced call to dispatch_group_leave()"
0x10f55a677 <+10>: movq %rcx, 0x27ad2(%rip) ; gCRAnnotations + 8
0x10f55a67e <+17>: movq %rax, 0x27afb(%rip) ; gCRAnnotations + 56
-> 0x10f55a685 <+24>: ud2
複製程式碼
崩潰的關鍵資訊如下,也指明瞭確實是引發了Unbalanced call,而且跟Fabric上的crash log一致。
Thread 1: EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)
dispatch_group_leave(group);
callq 0x10f55a66d ; dispatch_group_leave.cold.1
"BUG IN CLIENT OF LIBDISPATCH: Unbalanced call to dispatch_group_leave()"
複製程式碼
因此,可以確定該crash也同樣是過度呼叫了dispatch_group_leave函式導致的,所以第一次的修改果然是錯誤的。
過度呼叫dispatch_group_leave確實會崩潰,但具體原因是什麼?想弄懂以上的這些,只能去研究GCD的原始碼了。
dispatch_group_leave
dispatch_group_leave的原始碼如下:
void
dispatch_group_leave(dispatch_group_t dg)
{
// The value is incremented on a 64bits wide atomic so that the carry for
// the -1 -> 0 transition increments the generation atomically.
uint64_t new_state, old_state = os_atomic_add_orig2o(dg, dg_state,
DISPATCH_GROUP_VALUE_INTERVAL, release);
uint32_t old_value = (uint32_t)(old_state & DISPATCH_GROUP_VALUE_MASK);
if (unlikely(old_value == DISPATCH_GROUP_VALUE_1)) {
old_state += DISPATCH_GROUP_VALUE_INTERVAL;
do {
new_state = old_state;
if ((old_state & DISPATCH_GROUP_VALUE_MASK) == 0) {
new_state &= ~DISPATCH_GROUP_HAS_WAITERS;
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
} else {
// If the group was entered again since the atomic_add above,
// we can't clear the waiters bit anymore as we don't know for
// which generation the waiters are for
new_state &= ~DISPATCH_GROUP_HAS_NOTIFS;
}
if (old_state == new_state) break;
} while (unlikely(!os_atomic_cmpxchgv2o(dg, dg_state,
old_state, new_state, &old_state, relaxed)));
return _dispatch_group_wake(dg, old_state, true);
}
if (unlikely(old_value == 0)) {
DISPATCH_CLIENT_CRASH((uintptr_t)old_value,
"Unbalanced call to dispatch_group_leave()");
}
}
複製程式碼
Unbalanced call出現的時機,就是old_value為0的時候。os_atomic_add_orig2o操作是一個加操作,即往dispatch_group_t物件中的某個欄位dg_bits加一個值DISPATCH_GROUP_VALUE_INTERVAL,而加之前的舊值就是old_value。
所以,當old_value已經為0的時候,再執行dispatch_group_leave呼叫,就會觸發Unbalanced call的崩潰。
dispatch_group_enter
那只有一個dispatch_group_enter,而沒有對應的leave是不會崩潰的。如果是因為dispatch_group_enter的Unbalanced call,會出現什麼情況呢?
void
dispatch_group_enter(dispatch_group_t dg)
{
// The value is decremented on a 32bits wide atomic so that the carry
// for the 0 -> -1 transition is not propagated to the upper 32bits.
uint32_t old_bits = os_atomic_sub_orig2o(dg, dg_bits,
DISPATCH_GROUP_VALUE_INTERVAL, acquire);
uint32_t old_value = old_bits & DISPATCH_GROUP_VALUE_MASK;
if (unlikely(old_value == 0)) {
_dispatch_retain(dg); // <rdar://problem/22318411>
}
if (unlikely(old_value == DISPATCH_GROUP_VALUE_MAX)) {
DISPATCH_CLIENT_CRASH(old_bits,
"Too many nested calls to dispatch_group_enter()");
}
}
複製程式碼
這個enter就很好理解了。os_atomic_sub_orig2o操作是一個減操作,即往dispatch_group_t物件中的某個欄位dg_bits減一個值DISPATCH_GROUP_VALUE_INTERVAL,而減之前的舊值就是old_value。當old_value為DISPATCH_GROUP_VALUE_MAX的時候,再執行dispatch_group_enter呼叫,就會觸發Unbalanced call的崩潰。
測試一下:
- (void)group_enter_crash_1 {
dispatch_group_t group = dispatch_group_create();
while (YES) {
dispatch_group_enter(group); // 要挺久的,直接觸發dispatch_group_enter.cold.2
// <OS_dispatch_group: group[0x600003c73a70] = { xref = 1, ref = 2, count = 0, gen = 0, waiters = 0, notifs = 0 }>
}
}
複製程式碼
確實發生了崩潰,不過需要幾秒鐘,要使得os_atomic_sub_orig2o操作發生相當多的數量,才能使得old_value為DISPATCH_GROUP_VALUE_MAX的條件發生。此時的關鍵堆疊資訊為:
Thread 1: EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)
dispatch_group_enter
callq 0x10e155687 ; dispatch_group_enter.cold.1
movl %eax, %edi
callq 0x10e155697 ; dispatch_group_enter.cold.2
"BUG IN CLIENT OF LIBDISPATCH: Too many nested calls to dispatch_group_enter()"
複製程式碼
因此,GCD的group enter/leave操作,就是會對一個欄位值執行加/減操作,而避免Unbalanced call的方式就是成對出現。這也解釋了dispatch_group_enter與dispatch_group_leave不嚴格匹配的時候,不會導致崩潰的原因。
dispatch_group_create
dispatch_group_create的原始碼如下,顯然就只是一個初始化操作,然後給對應的group enter/leave需要的欄位值賦一個初始值,這裡應該是0。
DISPATCH_ALWAYS_INLINE
static inline dispatch_group_t
_dispatch_group_create_with_count(uint32_t n)
{
dispatch_group_t dg = _dispatch_object_alloc(DISPATCH_VTABLE(group),
sizeof(struct dispatch_group_s));
dg->do_next = DISPATCH_OBJECT_LISTLESS;
dg->do_targetq = _dispatch_get_default_queue(false);
if (n) {
os_atomic_store2o(dg, dg_bits,
-n * DISPATCH_GROUP_VALUE_INTERVAL, relaxed);
os_atomic_store2o(dg, do_ref_cnt, 1, relaxed); // <rdar://22318411>
}
return dg;
}
dispatch_group_t
dispatch_group_create(void)
{
return _dispatch_group_create_with_count(0);
}
複製程式碼
dispatch group enter/leave的原理
到這裡,已經基本明確了dispatch_group_enter和dispatch_group_leave的原理。dispatch_group_enter將dispatch_group_t物件中的某個欄位dg_bits的值執行減操作(減一),而dispatch_group_leave將其執行加操作(加一)。當dispatch_group_leave執行的時候,一定要確保之前呼叫過dispatch_group_enter(該欄位值小於一),這也就是balanced call的意思。
第二次分析
有了以上的分析,已經可以明確第一次的分析是錯誤的。
再看一下downloadURL的實際操作中finishCompletion的呼叫時機:
- (void)downloadURL:(NSURL *)url finishCompletion:(void(^)(NSURL *URL, BOOL isSuccess))finishCompletion {
// 各種邏輯,if-else判斷等。。。專案程式碼比較久了的原因。
if (根據url和downloadItems判定,是否正在下載中) {
// 相應操作
return;
}
// 其中有一個暫停任務的判斷,大概程式碼如下:
DownloadItem *downloadItem = [self downloadItemForURL:url];
if (downloadItem正在暫停) {
// 繼續下載操作
return;
}
// xxxxxx
// 觸發實際的下載操作
// 1. 使用url構建一個NSURLRequest,再構建一個AFDownloadRequestOperation
// 2. 根據url構建一個downloadItem物件,傳入下載完成回撥finishCompletion,裝入downloadItems字典中。
// 3. 設定CompletionBlock,其中根據url來獲取downloadItem,根據條件來執行其finishCompletion
// 4. 新增到queue中,發起下載請求
[task setCompletionBlockWithSuccess:^(AFHTTPRequestOperation *operation, id responseObject) {
DownloadItem *downloadItem = [self getDownloadItem:operation.request.URL];
// 根據下載狀態,執行downloadItem中的finishCompletion
}];
}
複製程式碼
程式碼中使用downloadItems字典來儲存下載封裝物件downloadItem,finishCompletion即為外部傳入的下載完成回撥。。
self.downloadItems[url] = downloadItem;
- (DownloadItem *)getDownloadItem:(NSURL *)url
{
return self.downloadItems[url.absoluteString];
}
複製程式碼
雖然程式碼比較久了,但流程看起來好像沒啥問題。。。然而仔細一想,涉及到downloadItems字典的邏輯貌似最容易埋坑,思考一番果然恍然大悟。
問題確實就出在downloadItems字典這一塊:
- 假設傳入URL,構建downloadItem A物件,傳入finishCompletion A,存入downloadItems字典中。根據URL發起下載操作 A。這一步流程正常。
- 再次下載同樣一個連結URL,正常不會有問題,那萬一出現多執行緒場景呢?程式碼對downloadItems字典的相關操作沒有做執行緒保護。
- 假設多執行緒場景下:使用同一個URL,可能同時符合過濾條件,而觸發實際的下載操作。即,構建downloadItem B物件,傳入finishCompletion B,存入downloadItems字典中。根據URL發起下載操作 B。
- 此時downloadItems字典中,URL對應的downloadItem從之前的downloadItem A,變成了downloadItem B。
- 兩個下載操作都完成後,根據URL取出downloadItem,此時只能取到downloadItem B,執行finishCompletion B,裡邊包含一個dispatch_group_leave操作。因此下載操作 A和下載操作 B都會觸發finishCompletion B。導致B相關流程,出現dispatch_group_leave的Unbalanced call,導致崩潰。
知道了根本原因就好辦了,改動其實也很簡單,在下載任務task完成的回撥setCompletionBlockWithSuccess中,不要從downloadItems字典中取出downloadItem。而是通過捕獲當前的區域性變數downloadItem即可獲取到正確的downloadItem。
總結
iOS相關的官方文件,大部分都寫得非常好。但是也有個別一些,如GCD group,寫得太簡略,讓人很容易似懂非懂。這個時候,就是需要show me the code的時候了。
One More Thing
知道了GCD group enter/leave的原理,相信以後便不會再犯類似的錯誤了。最後,還有一個疑問,dispatch_group_notify裡邊的notification block到底是如何觸發執行的呢?
dispatch_group_t
關於dispatch_group_t這個結構體,之前一直沒有分析。
typedef struct dispatch_group_s *dispatch_group_t;
struct dispatch_group_s {
DISPATCH_OBJECT_HEADER(group);
DISPATCH_UNION_LE(uint64_t volatile dg_state,
uint32_t dg_bits,
uint32_t dg_gen
) DISPATCH_ATOMIC64_ALIGN;
struct dispatch_continuation_s *volatile dg_notify_head;
struct dispatch_continuation_s *volatile dg_notify_tail;
};
複製程式碼
dg_bits是enter/leave需要的欄位值,而該值在其他GCD介面中也需要使用。兩個dispatch_continuation_t物件,dg_notify_head和dg_notify_tail則是group notification block相關的結構了,可以看出封裝notification block的結構是以連結串列形式儲存的group中的。
typedef struct dispatch_continuation_s {
DISPATCH_CONTINUATION_HEADER(continuation);
} *dispatch_continuation_t;
// If dc_flags is less than 0x1000, then the object is a continuation.
// Otherwise, the object has a private layout and memory management rules. The
// layout until after 'do_next' must align with normal objects.
#define DISPATCH_CONTINUATION_HEADER(x) \
union { \
const void *do_vtable; \
uintptr_t dc_flags; \
}; \
union { \
pthread_priority_t dc_priority; \
int dc_cache_cnt; \
uintptr_t dc_pad; \
}; \
struct voucher_s *dc_voucher; \
struct dispatch_##x##_s *volatile do_next; \
dispatch_function_t dc_func; \
void *dc_ctxt; \
void *dc_data; \
void *dc_other
複製程式碼
dispatch_continuation_t結構體的內容其實不多,不過沒啥註釋,基本看不出來啥。
dispatch_group_notify
看一下dispatch_group_notify的原始碼:
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_continuation_t dsn)
{
uint64_t old_state, new_state;
dispatch_continuation_t prev;
dsn->dc_data = dq;
_dispatch_retain(dq);
prev = os_mpsc_push_update_tail(os_mpsc(dg, dg_notify), dsn, do_next);
if (os_mpsc_push_was_empty(prev)) _dispatch_retain(dg);
os_mpsc_push_update_prev(os_mpsc(dg, dg_notify), prev, dsn, do_next);
if (os_mpsc_push_was_empty(prev)) {
os_atomic_rmw_loop2o(dg, dg_state, old_state, new_state, release, {
new_state = old_state | DISPATCH_GROUP_HAS_NOTIFS;
if ((uint32_t)old_state == 0) {
os_atomic_rmw_loop_give_up({
return _dispatch_group_wake(dg, new_state, false);
});
}
});
}
}
DISPATCH_NOINLINE
void
dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
dispatch_function_t func)
{
dispatch_continuation_t dsn = _dispatch_continuation_alloc();
_dispatch_continuation_init_f(dsn, dq, ctxt, func, 0, DC_FLAG_CONSUME);
_dispatch_group_notify(dg, dq, dsn);
}
#ifdef __BLOCKS__
void
dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
dispatch_block_t db)
{
dispatch_continuation_t dsn = _dispatch_continuation_alloc();
_dispatch_continuation_init(dsn, dq, db, 0, DC_FLAG_CONSUME);
_dispatch_group_notify(dg, dq, dsn);
}
#endif
複製程式碼
notification block的執行,顯然是_dispatch_group_wake呼叫觸發的。若dispatch_group_notify函式呼叫之前,並未有執行過dispatch_group_enter,則會直接觸發_dispatch_group_wake。
dispatch_group_notify函式會使用_dispatch_continuation_init函式,將一個dispatch_block_t物件db存入dispatch_group_t物件dg中。
_dispatch_continuation_init
_dispatch_continuation_init函式中則是對dispatch_continuation_t物件的各種初始化操作。
DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_init_f(dispatch_continuation_t dc,
dispatch_queue_class_t dqu, void *ctxt, dispatch_function_t f,
dispatch_block_flags_t flags, uintptr_t dc_flags)
{
pthread_priority_t pp = 0;
dc->dc_flags = dc_flags | DC_FLAG_ALLOCATED;
dc->dc_func = f;
dc->dc_ctxt = ctxt;
// in this context DISPATCH_BLOCK_HAS_PRIORITY means that the priority
// should not be propagated, only taken from the handler if it has one
if (!(flags & DISPATCH_BLOCK_HAS_PRIORITY)) {
pp = _dispatch_priority_propagate();
}
_dispatch_continuation_voucher_set(dc, flags);
return _dispatch_continuation_priority_set(dc, dqu, pp, flags);
}
DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_init(dispatch_continuation_t dc,
dispatch_queue_class_t dqu, dispatch_block_t work,
dispatch_block_flags_t flags, uintptr_t dc_flags)
{
void *ctxt = _dispatch_Block_copy(work);
dc_flags |= DC_FLAG_BLOCK | DC_FLAG_ALLOCATED;
if (unlikely(_dispatch_block_has_private_data(work))) {
dc->dc_flags = dc_flags;
dc->dc_ctxt = ctxt;
// will initialize all fields but requires dc_flags & dc_ctxt to be set
return _dispatch_continuation_init_slow(dc, dqu, flags);
}
dispatch_function_t func = _dispatch_Block_invoke(work);
if (dc_flags & DC_FLAG_CONSUME) {
func = _dispatch_call_block_and_release;
}
return _dispatch_continuation_init_f(dc, dqu, ctxt, func, flags, dc_flags);
}
DISPATCH_ALWAYS_INLINE
static inline dispatch_qos_t
_dispatch_continuation_priority_set(dispatch_continuation_t dc,
dispatch_queue_class_t dqu,
pthread_priority_t pp, dispatch_block_flags_t flags)
{
dispatch_qos_t qos = DISPATCH_QOS_UNSPECIFIED;
#if HAVE_PTHREAD_WORKQUEUE_QOS
dispatch_queue_t dq = dqu._dq;
if (likely(pp)) {
bool enforce = (flags & DISPATCH_BLOCK_ENFORCE_QOS_CLASS);
bool is_floor = (dq->dq_priority & DISPATCH_PRIORITY_FLAG_FLOOR);
bool dq_has_qos = (dq->dq_priority & DISPATCH_PRIORITY_REQUESTED_MASK);
if (enforce) {
pp |= _PTHREAD_PRIORITY_ENFORCE_FLAG;
qos = _dispatch_qos_from_pp_unsafe(pp);
} else if (!is_floor && dq_has_qos) {
pp = 0;
} else {
qos = _dispatch_qos_from_pp_unsafe(pp);
}
}
dc->dc_priority = pp;
#else
(void)dc; (void)dqu; (void)pp; (void)flags;
#endif
return qos;
}
複製程式碼
注意_dispatch_continuation_init函式中,引數dispatch_block_t work即為傳入的notification block。
void *ctxt = _dispatch_Block_copy(work);
// xxxxxx
dc->dc_ctxt = ctxt;
複製程式碼
notification block實際存入了dispatch_continuation_t物件dc的dc_ctxt欄位中了。
_dispatch_group_wake
DISPATCH_NOINLINE
static void
_dispatch_group_wake(dispatch_group_t dg, uint64_t dg_state, bool needs_release)
{
uint16_t refs = needs_release ? 1 : 0; // <rdar://problem/22318411>
if (dg_state & DISPATCH_GROUP_HAS_NOTIFS) {
dispatch_continuation_t dc, next_dc, tail;
// Snapshot before anything is notified/woken <rdar://problem/8554546>
dc = os_mpsc_capture_snapshot(os_mpsc(dg, dg_notify), &tail);
do {
dispatch_queue_t dsn_queue = (dispatch_queue_t)dc->dc_data;
next_dc = os_mpsc_pop_snapshot_head(dc, tail, do_next);
_dispatch_continuation_async(dsn_queue, dc,
_dispatch_qos_from_pp(dc->dc_priority), dc->dc_flags);
_dispatch_release(dsn_queue);
} while ((dc = next_dc));
refs++;
}
if (dg_state & DISPATCH_GROUP_HAS_WAITERS) {
_dispatch_wake_by_address(&dg->dg_gen);
}
if (refs) _dispatch_release_n(dg, refs);
}
#define os_mpsc_capture_snapshot(Q, tail) ({ \
os_mpsc_node_type(Q) _head = os_mpsc_get_head(Q); \
os_atomic_store(_os_mpsc_head Q, NULL, relaxed); \
/* 22708742: set tail to NULL with release, so that NULL write */ \
/* to head above doesn't clobber head from concurrent enqueuer */ \
*(tail) = os_atomic_xchg(_os_mpsc_tail Q, NULL, release); \
_head; \
})
#define os_mpsc_pop_snapshot_head(head, tail, _o_next) ({ \
typeof(head) _head = (head), _tail = (tail), _n = NULL; \
if (_head != _tail) _n = os_mpsc_get_next(_head, _o_next); \
_n; \
})
複製程式碼
通過 os_mpsc_pop_snapshot_head 的定義,以及 next_dc = os_mpsc_pop_snapshot_head(dc, tail, do_next); 這一句程式碼,可以看出_dispatch_group_wake函式的主要邏輯也就是對dispatch_continuation_t next_dc這個一個連結串列結構,依次取出其中的元素dispatch_continuation_t dc,執行函式呼叫_dispatch_continuation_async,這也就是觸發notification block執行的實際程式碼。
_dispatch_continuation_async(dsn_queue, dc,
_dispatch_qos_from_pp(dc->dc_priority), dc->dc_flags);
複製程式碼
_dispatch_continuation_async
DISPATCH_ALWAYS_INLINE
static inline void
_dispatch_continuation_async(dispatch_queue_class_t dqu,
dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags)
{
#if DISPATCH_INTROSPECTION
if (!(dc_flags & DC_FLAG_NO_INTROSPECTION)) {
_dispatch_trace_item_push(dqu, dc);
}
#else
(void)dc_flags;
#endif
return dx_push(dqu._dq, dc, qos);
}
複製程式碼
看這個dx_push(dqu._dq, dc, qos);
#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)
#define dx_vtable(x) (&(x)->do_vtable->_os_obj_vtable)
複製程式碼
這個do_vtable是啥呢?即為之前構建dispatch_continuation_t物件的時候,其中的DISPATCH_CONTINUATION_HEADER巨集定義中的欄位。
union { \
const void *do_vtable; \
uintptr_t dc_flags; \
}; \
複製程式碼
#define DISPATCH_QUEUE_VTABLE_HEADER(x); \
DISPATCH_OBJECT_VTABLE_HEADER(x); \
void (*const dq_activate)(dispatch_queue_class_t, bool *allow_resume); \
void (*const dq_wakeup)(dispatch_queue_class_t, dispatch_qos_t, \
dispatch_wakeup_flags_t); \
void (*const dq_push)(dispatch_queue_class_t, dispatch_object_t, \
dispatch_qos_t)
複製程式碼
所以,由此可以看出,在_dispatch_group_wake呼叫時,通過將notification block丟入(dx_push)到指定的queue中,則完成了GCD group的一個完整流程。
_dispatch_workloop_push
關於 #define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z) ,通過DISPATCH_VTABLE_INSTANCE巨集將dq_push與_dispatch_workloop_push關聯起來。
DISPATCH_VTABLE_INSTANCE(workloop,
.do_type = DISPATCH_WORKLOOP_TYPE,
.do_dispose = _dispatch_workloop_dispose,
.do_debug = _dispatch_queue_debug,
.do_invoke = _dispatch_workloop_invoke,
.dq_activate = _dispatch_queue_no_activate,
.dq_wakeup = _dispatch_workloop_wakeup,
.dq_push = _dispatch_workloop_push,
);
複製程式碼
_dispatch_workloop_push的函式原型如下:
void
_dispatch_workloop_push(dispatch_workloop_t dwl, dispatch_object_t dou,
dispatch_qos_t qos)
{
struct dispatch_object_s *prev;
if (unlikely(_dispatch_object_is_waiter(dou))) {
return _dispatch_workloop_push_waiter(dwl, dou._dsc, qos);
}
if (qos < _dispatch_priority_qos(dwl->dq_priority)) {
qos = _dispatch_priority_qos(dwl->dq_priority);
}
if (qos == DISPATCH_QOS_UNSPECIFIED) {
qos = _dispatch_priority_fallback_qos(dwl->dq_priority);
}
prev = _dispatch_workloop_push_update_tail(dwl, qos, dou._do);
if (unlikely(os_mpsc_push_was_empty(prev))) {
_dispatch_retain_2_unsafe(dwl);
}
_dispatch_workloop_push_update_prev(dwl, qos, prev, dou._do);
if (unlikely(os_mpsc_push_was_empty(prev))) {
return _dispatch_workloop_wakeup(dwl, qos, DISPATCH_WAKEUP_CONSUME_2 |
DISPATCH_WAKEUP_MAKE_DIRTY);
}
}
複製程式碼
前邊的 dx_push(dqu._dq, dc, qos); 即等同於 _dispatch_workloop_push(dqu._dq, dc, qos); 操作。
呼叫_dispatch_workloop_push即完成了將dispatch_continuation_t物件dc丟到dispatch_queue_class_t的_dq中(queue),同時還有qos引數。
至於queue中的block的實際執行程式碼,要繼續從GCD原始碼找答案了。這裡先埋一個坑,以後再填吧!