HDU 6063 RXD and math (打表)
RXD and math
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 110 Accepted Submission(s): 48
Problem Description
RXD is a good mathematician.
One day he wants to calculate:
output the answer module 109+7.
1≤n,k≤1018
p1,p2,p3…pk are different prime numbers
One day he wants to calculate:
∑i=1nkμ2(i)×⌊nki‾‾‾√⌋
output the answer module 109+7.
1≤n,k≤1018
μ(n)=1(n=1)
μ(n)=(−1)k(n=p1p2…pk)
μ(n)=0(otherwise)
p1,p2,p3…pk are different prime numbers
Input
There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k.
Output
For each test case, output "Case #x: y", which means the test case number and the answer.
Sample Input
10 10
Sample Output
Case #1: 999999937
Source
題意:
有一個莫比烏斯函式,就是每當μ2(i)的i含平方因子時,等於0,其他都等於1。
POINT:
對於know nothing的我,只能打表了。
//#include <iostream>
//#include <stdio.h>
//#include <string.h>
//#include <math.h>
//#include <algorithm>
//using namespace std;
//#define LL long long
//const LL N = 10000000+6;
//LL f[N];
//void init()
//{
// for(LL i=1;i<=N;i++)
// {
// f[i]=1;
// }
// for(LL i=2;i<=sqrt(N);i++)
// {
// if(f[i]==0) continue;
// LL now=i*i;
// for(LL j=now;j<=N;j+=now)
// {
// f[j]=0;
// }
// }
//
//}
//void dfs(LL n,LL k)
//{
// LL ans=0;
// for(LL i=1;i<=(LL)pow(n,k);i++)
// {
// ans+=f[i]*(LL)floor(sqrt(pow(n,k)/(1.0*i)));
// }
// printf("n:%lld k:%lld ans:%lld\n",n,k,ans);
//}
//int main()
//{
// init();
// for(LL n=1;n<=10;n++)
// {
// for(LL k=1;k<=7;k++)
// {
//
// dfs(n,k);
// }
// }
//
//
//}
//
//#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define LL long long
const LL p = 1e9+7;
LL qkm(LL base,LL mi)
{
LL ans=1;
while(mi)
{
if(mi&1) ans*=base;
base*=base;
ans%=p;
base%=p;
mi>>=1;
}
return ans;
}
int main()
{
LL n,k;
int o=0;
while(~scanf("%lld %lld",&n,&k))
{
n%=p;
LL ans=qkm(n,k);
printf("Case #%d: %lld\n",++o,ans);
}
}
相關文章
- HDU 6060 RXD and dividing
- HDU - 6182 A Math Problem
- HDU 5795 A Simple Nim (SG函式+打表找規律)函式
- Math.round(),Math.ceil(),Math.floor
- 打表找規律
- Math
- hdu 2111 Saving HDU (DP)
- Math For Programmers
- Math類
- JavaScript Math.trunc vs Math.floor All In OneJavaScript
- Shape of HDU
- HDU 3349
- Math.imul()
- Math.cosh()
- Math.atanh()
- Math.asinh()
- Math.random()random
- Lua math庫
- Java之MathJava
- Math函式函式
- HDU 2052(C語言+註釋)+HDU 2090C語言
- 簡單的揹包問題(入門)HDU2602 HDU2546 HDU1864
- HDU 3661 Assignments
- hdu 6415 - DP
- HDU4787
- hdu2083
- hdu5540
- HDU 4921 Map
- hdu5532
- HDU 1240 Asteroids!AST
- JavaScript Math.floor()JavaScript
- JavaScript Math.ceil()JavaScript
- Math.acosh()方法
- JavaScript Math.PIJavaScript
- Math.max() 方法
- Math.clz32()
- Math.tanh() 方法
- Math.sinh() 方法