尤拉計劃694:立方滿因數
A positive integer n is considered cube-full, if for every prime p that divides n, so does p3. Note that 1 is considered cube-full.
Let s(n) be the function that counts the number of cube-full divisors of n. For example, 1, 8 and 16 are the three cube-full divisors of 16. Therefore, s(16)=3 Let S(n) represent the summatory function of s(n), that is S(n)=∑i=1~n s(i)
You are given S(16)=19 , S(100)=126 and S(10000)=13344
Find S(1018).
如果一個正整數n,其所有質因數的立方也是它的因數,則稱其為立方滿數。注意1被當作立方滿數。
設s(n)是n的立方滿因數個數。例如,1、8、16是16的3個立方滿因數。所以s(16)=3。設S(n)表示s(n)的求和,即S(n)=∑i=1n s(i)
已知 S(16)=19 , S(100)=126 , S(10000)=13344
求S(1018).
考慮
所有質數都不是Cube-full 數
所有質數立方及更高次方都是Cube-full 數 比如 8 16 64
所有Cube-full 數乘以另一個Cube-full 數的積也是 8x27=216
每個數都能表示成p1^n1*p2^n2... pm^nm,所以它的因數個數就是n1*n2...nm+1
只有大於1的Cube-full 數才有超過1個以上的Cube-full 因數,其他數n的s(n)都為1
以下程式碼算小於27000(30^3)的n的S(n)
import math
def Sai(n):
primes=[]
h = [True] * int(n**(1.0/3)+1)
h[:2] = [False, False]
for i in range(2, int(n ** (1.0/3*0.5)) + 1):
if h[i]:
h[i*i::i] = [False] * len(h[i*i::i])
for i, e in enumerate(h):
if e:
primes.append(i)
sums=n
for p in primes:
for i in range(0,int(math.log(n)/math.log(p))+1):
sums+=n//(p**(i+3)) #p**3的倍數
for p1 in primes:
if (p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2)**3 >=n: break
if p2>p1:
for i in range(0,int(math.log(n)/math.log(p1))+1):
for j in range(0,int(math.log(n/p1**i)/math.log(p2))+1):
sums+=n//(p1**(i+3)*p2**(j+3)) #(p1**3的倍數*p2**3的倍數
return sums
在迴圈開頭新增退出條件,可以算出10^18內的了
import math
def Sai(n):
primes=[]
h = [True] * int(n**(1.0/3)+1)
h[:2] = [False, False]
for i in range(2, int(n ** (1.0/3*0.5)) + 1):
if h[i]:
h[i*i::i] = [False] * len(h[i*i::i])
for i, e in enumerate(h):
if e:
primes.append(i)
sums=n
for p in primes:
for i in range(0,int(math.log(n)/math.log(p))+1):
sums+=n//(p**(i+3)) #p**3的倍數
for p1 in primes:
if (p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2)**3 >=n: break
if p2>p1:
for i in range(0,int(math.log(n)/math.log(p1))+1):
for j in range(0,int(math.log(n/p1**i)/math.log(p2))+1):
if (p1**(i+3)*p2**(j+3))>n: break
sums+=n//(p1**(i+3)*p2**(j+3)) #(p1**3的倍數*p2**3的倍數
return sums
以上算到2個不同質因數的例子說明,依次把1個質數立方、4次方、5次方...的倍數,2個質數立方、4次方、5次方...之積的倍數進行計數,就可以得出不超過2個質數立方因數的個數,而每次只需要新增當前不同質數的個數即可,因為少於這個數的都已經在前面計數過了,依次類推,只要再羅列下去。就可以得到所有最多7個質數立方組成的10^18(最大的小於106的不同質因數之積2*3*5*7*11*13*17=510510)以內的立方滿因數個數。
例如:三個質數之積(2x3x5)^3=27,000,有8個(=2x2x2)立方滿因數1 8 27 125, 8*27 8*125,27*125, 8*27*125,在前面計算中作為8的倍數和27的倍數和125的倍數各算1個和1個和1個,算上都有的1,再減去前面作為2質數之積的3個,唯一遺漏的,也就是8*27*125。
把上述程式碼一直寫下去很枯燥,也沒有必要,因為隨著不同質因數的增加,每個的次方數範圍會很小,質數本身也很小,到7個因數時,最大的質數只能是31。每個的次方數都只能是1。
2*3*5*7*11*13*31=930930,2*3*5*7*11*17*31=1217370
上述的程式碼存在bug,掃描質數表的上限太大了,其實能減少3個,時間一下變成一半。
import math
def Said(n):
primes=[]
h = [True] * int(n**(1.0/3)+1)
h[:2] = [False, False]
for i in range(2, int(n ** (1.0/3*0.5)) + 1):
if h[i]:
h[i*i::i] = [False] * len(h[i*i::i])
for i, e in enumerate(h):
if e:
primes.append(i)
sums=n
for p in primes:
for i in range(0,int(math.log(n)/math.log(p))+1-3):
sums+=n//(p**(i+3)) #p**3的倍數
for p1 in primes:
if (p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2)**3 >=n: break
if p2>p1:
for i in range(0,int(math.log(n)/math.log(p1))+1-3):
for j in range(0,int(math.log(n/p1**i)/math.log(p2))+1-3):
if (p1**(i+3)*p2**(j+3))>n: break
sums+=n//(p1**(i+3)*p2**(j+3)) #(p1**3的倍數*p2**3的倍數
return sums
繼續微調2個質數迴圈的上界,p1^(i+3)*p2^(j+3)<=n,因為p2大於p1,所以p1^(i+3)*p1^3<=n,通過計算可得i<=(log(n)/log(p1)-6,同理j<=log(n/p^(i+3))-3。修改後時間再減一點。 加上3個不同質數因數的情況,用時一下擴大了幾倍。
#-------------------------------p1^n1*p2^n2*p3^n3*x
for p1 in primes:
if (p1*p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2*p2)**3 >=n: break
if p2>p1:
for p3 in primes:
if (p1*p2*p3)**3 >n: break
if p3>p2:
for i in range(0,int(math.log(n,p1)-3-3)+1-3):
for j in range(0,int(math.log(n/p1**(i+3),p2)-3)+1-3):
for k in range(0,int(math.log(n/p1**(i+3)/p2**(j+3),p3))+1-3):
if (p1**(i+3)*p2**(j+3)*p3**(k+3))>n: break
sums+=n//(p1**(i+3)*p2**(j+3)*p3**(k+3))
最後通過的程式碼,實在是醜陋,執行時間倒是在1分鐘以內(使用pypy3 7.2)。
import math
def Sai7g(n):
primes=[]
h = [True] * int(n**(1.0/3)+1)
h[:2] = [False, False]
for i in range(2, int(n ** (1.0/3*0.5)) + 1):
if h[i]:
h[i*i::i] = [False] * len(h[i*i::i])
for i, e in enumerate(h):
if e:
primes.append(i)
sums=n
#----------------------------------------p^n*x
for p in primes:
for i in range(0,int(math.log(n,p))+1-3):
sums+=n//(p**(i+3))
#-----------------------------------p1^n1*p2^n2*x
for p1 in primes:
if (p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2)**3 >n: break
if p2>p1:
for i in range(0,int(math.log(n,p1)-3)+1-3):
for j in range(0,int(math.log(n/p1**(i+3),p2))+1-3):
sums+=n//(p1**(i+3)*p2**(j+3))
#-------------------------------p1^n1*p2^n2*p3^n3*x
for p1 in primes:
if (p1*p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2*p2)**3 >=n: break
if p2>p1:
for p3 in primes:
if (p1*p2*p3)**3 >n: break
if p3>p2:
for i in range(0,int(math.log(n,p1)-3-3)+1-3):
for j in range(0,int(math.log(n/p1**(i+3),p2)-3)+1-3):
for k in range(0,int(math.log(n/p1**(i+3)/p2**(j+3),p3))+1-3):
sums+=n//(p1**(i+3)*p2**(j+3)*p3**(k+3))
#-----------------------------------p1^n1*p2^n2*p3^n3*p4^n4*x
for p1 in primes:
if (p1*p1*p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2*p2*p2)**3 >=n: break
if p2>p1:
for p3 in primes:
if (p1*p2*p3*p3)**3 >=n: break
if p3>p2:
for p4 in primes:
if (p1*p2*p3*p4)**3 >n: break
if p4>p3:
for i in range(0,int(math.log(n,p1)-3-3-3)+1-3):
for j in range(0,int(math.log(n/p1**(i+3),p2)-3-3)+1-3):
for k in range(0,int(math.log(n/p1**(i+3)/p2**(j+3),p3)-3)+1-3):
for a in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3),p4))+1-3):
sums+=n//(p1**(i+3)*p2**(j+3)*p3**(k+3)*p4**(a+3))
#-----------------------------------p1^n1*p2^n2*p3^n3*p4^n4*p5^n5*x
for p1 in primes:
if (p1*p1*p1*p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2*p2*p2*p2)**3 >=n: break
if p2>p1:
for p3 in primes:
if (p1*p2*p3*p3*p3)**3 >=n: break
if p3>p2:
for p4 in primes:
if (p1*p2*p3*p4*p4)**3 >n: break
if p4>p3:
for p5 in primes:
if (p1*p2*p3*p4*p5)**3 >n: break
if p5>p4:
for i in range(0,int(math.log(n,p1)-3-3-3-3)+1-3):
for j in range(0,int(math.log(n/p1**(i+3),p2)-3-3-3)+1-3):
for k in range(0,int(math.log(n/p1**(i+3)/p2**(j+3),p3)-3-3)+1-3):
for a in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3),p4)-3)+1-3):
for b in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3)/p4**(a+3),p5))+1-3):
sums+=n//(p1**(i+3)*p2**(j+3)*p3**(k+3)*p4**(a+3)*p5**(b+3))
#-----------------------------------p1^n1*p2^n2*p3^n3*p4^n4*p5^n5*p6^n6*x
for p1 in primes:
if (p1*p1*p1*p1*p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2*p2*p2*p2*p2)**3 >=n: break
if p2>p1:
for p3 in primes:
if (p1*p2*p3*p3*p3*p3)**3 >=n: break
if p3>p2:
for p4 in primes:
if (p1*p2*p3*p4*p4*p4)**3 >n: break
if p4>p3:
for p5 in primes:
if (p1*p2*p3*p4*p5*p5)**3 >n: break
if p5>p4:
for p6 in primes:
if (p1*p2*p3*p4*p5*p6)**3 >n: break
if p6>p5:
for i in range(0,int(math.log(n,p1)-3-3-3-3-3)+1-3):
for j in range(0,int(math.log(n/p1**(i+3),p2)-3-3-3-3)+1-3):
for k in range(0,int(math.log(n/p1**(i+3)/p2**(j+3),p3)-3-3-3)+1-3):
for a in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3),p4)-3-3)+1-3):
for b in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3)/p4**(a+3),p5)-3)+1-3):
for c in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3)/p4**(a+3)/p5**(b+3),p6))+1-3):
sums+=n//(p1**(i+3)*p2**(j+3)*p3**(k+3)*p4**(a+3)*p5**(b+3)*p6**(c+3))
#-----------------------------------p1^n1*p2^n2*p3^n3*p4^n4*p5^n5*p6^n6*p7^n7*x
for p1 in primes:
if (p1*p1*p1*p1*p1*p1*p1)**3 >=n: break
for p2 in primes:
if (p1*p2*p2*p2*p2*p2*p2)**3 >=n: break
if p2>p1:
for p3 in primes:
if (p1*p2*p3*p3*p3*p3*p3)**3 >=n: break
if p3>p2:
for p4 in primes:
if (p1*p2*p3*p4*p4*p4*p4)**3 >n: break
if p4>p3:
for p5 in primes:
if (p1*p2*p3*p4*p5*p5*p5)**3 >n: break
if p5>p4:
for p6 in primes:
if (p1*p2*p3*p4*p5*p6*p6)**3 >n: break
if p6>p5:
for p7 in primes:
if (p1*p2*p3*p4*p5*p6*p7)**3 >n: break
if p7>p6:
for i in range(0,int(math.log(n,p1)-3-3-3-3-3-3)+1-3):
for j in range(0,int(math.log(n/p1**(i+3),p2)-3-3-3-3-3)+1-3):
for k in range(0,int(math.log(n/p1**(i+3)/p2**(j+3),p3)-3-3-3-3)+1-3):
for a in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3),p4)-3-3-3)+1-3):
for b in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3)/p4**(a+3),p5)-3-3)+1-3):
for c in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3)/p4**(a+3)/p5**(b+3),p6)-3)+1-3):
for d in range(0,int(math.log(n/p1**(i+3)/p2**(j+3)/p3**(k+3)/p4**(a+3)/p5**(b+3)/p6**(c+3),p7))+1-3):
sums+=n//(p1**(i+3)*p2**(j+3)*p3**(k+3)*p4**(a+3)*p5**(b+3)*p6**(c+3)*p7**(d+3))
return sums
相關文章
- 尤拉計劃735:2n^2的因數
- 尤拉計劃704:二項式係數中的2因數
- 尤拉計劃698:123數
- 尤拉計劃719:拆分數
- 尤拉計劃700:尤拉幣
- 尤拉計劃725:數位之和數
- 尤拉計劃699:三腳數
- 尤拉計劃706:三象數
- 尤拉計劃718:不可達數
- 尤拉計劃709:偶數袋
- 尤拉計劃712:指數差
- 尤拉計劃714:兩種數位的數
- 尤拉計劃622:洗牌
- Note -「因數的尤拉函式求和」函式
- 尤拉計劃696:麻將
- 尤拉計劃721:無理數高次冪
- 尤拉計劃705:除數序列的逆轉次數
- 尤拉計劃686:2的冪
- 尤拉計劃715:六元組
- 尤拉計劃708:你只要2
- 尤拉計劃749:近似冪和
- 尤拉計劃751:串聯重合
- 尤拉計劃739:和的和
- 尤拉計劃745:平方和
- 尤拉計劃717:取模公式之和公式
- 尤拉計劃722:慢收斂系列
- 尤拉計劃695:隨機長方形隨機
- 尤拉計劃710:1百萬會員
- 尤拉計劃621:把整數表示為三角數之和
- 尤拉計劃723:畢達哥拉斯四邊形
- 尤拉計劃697:隨機衰減序列隨機
- 尤拉計劃713:圖蘭熱水系統
- 尤拉計劃711:二進位制黑板
- 尤拉計劃747:三角披薩
- 尤拉計劃748:倒丟蕃多方程
- 尤拉計劃657:不完整的單詞
- 尤拉計劃701:隨機連線區域隨機
- 尤拉計劃658:不完整的單詞(2)