李沐《動手學深度學習》PyTorch 實現版開源,瞬間登上 GitHub 熱榜!

红色石头發表於2019-10-08

李沐,亞馬遜 AI 主任科學家,名聲在外!半年前,由李沐、Aston Zhang 等人合力打造的《動手學深度學習》正式上線,免費供大家閱讀。這是一本面向中文讀者的能執行、可討論的深度學習教科書!

之前,紅色石頭就分享過這份資源,再次附上:

線上預覽地址:

https://zh.d2l.ai/

GitHub 專案地址:

https://github.com/d2l-ai/d2l-zh

課程視訊地址:

https://space.bilibili.com/209599371/channel/detail?cid=23541

我們知道,作為 MXNet 的作者之一,李沐的這本《動手學深度學習》也是使用 MXNet 框架寫成的。但是很多入坑機器學習的萌新們使用的卻是 PyTorch。如果有教材對應的 PyTorch 實現程式碼就更好了!

撒花!今天就給大家帶來這本書的 PyTorch 實現原始碼。最近,來自印度理工學院的資料科學小組,把《動手學深度學習》從 MXNet “翻譯”成了 PyTorch,經過 3 個月的努力,這個專案已經基本完成,並登上了 GitHub 熱榜。

首先放上這份資源的 GitHub 地址:

https://github.com/dsgiitr/d2l-pytorch

詳細目錄如下:

  • Ch02 Installation
    • Installation
  • Ch03 Introduction
    • Introduction
  • Ch04 The Preliminaries: A Crashcourse
    • 4.1 Data Manipulation
    • 4.2 Linear Algebra
    • 4.3 Automatic Differentiation
    • 4.4 Probability and Statistics
    • 4.5 Naive Bayes Classification
    • 4.6 Documentation
  • Ch05 Linear Neural Networks
    • 5.1 Linear Regression
    • 5.2 Linear Regression Implementation from Scratch
    • 5.3 Concise Implementation of Linear Regression
    • 5.4 Softmax Regression
    • 5.5 Image Classification Data (Fashion-MNIST)
    • 5.6 Implementation of Softmax Regression from Scratch
    • 5.7 Concise Implementation of Softmax Regression
  • Ch06 Multilayer Perceptrons
    • 6.1 Multilayer Perceptron
    • 6.2 Implementation of Multilayer Perceptron from Scratch
    • 6.3 Concise Implementation of Multilayer Perceptron
    • 6.4 Model Selection Underfitting and Overfitting
    • 6.5 Weight Decay
    • 6.6 Dropout
    • 6.7 Forward Propagation Backward Propagation and Computational Graphs
    • 6.8 Numerical Stability and Initialization
    • 6.9 Considering the Environment
    • 6.10 Predicting House Prices on Kaggle
  • Ch07 Deep Learning Computation
    • 7.1 Layers and Blocks
    • 7.2 Parameter Management
    • 7.3 Deferred Initialization
    • 7.4 Custom Layers
    • 7.5 File I/O
    • 7.6 GPUs
  • Ch08 Convolutional Neural Networks
    • 8.1 From Dense Layers to Convolutions
    • 8.2 Convolutions for Images
    • 8.3 Padding and Stride
    • 8.4 Multiple Input and Output Channels
    • 8.5 Pooling
    • 8.6 Convolutional Neural Networks (LeNet)
  • Ch09 Modern Convolutional Networks
    • 9.1 Deep Convolutional Neural Networks (AlexNet)
    • 9.2 Networks Using Blocks (VGG)
    • 9.3 Network in Network (NiN)
    • 9.4 Networks with Parallel Concatenations (GoogLeNet)
    • 9.5 Batch Normalization
    • 9.6 Residual Networks (ResNet)
    • 9.7 Densely Connected Networks (DenseNet)
  • Ch10 Recurrent Neural Networks
    • 10.1 Sequence Models
    • 10.2 Language Models
    • 10.3 Recurrent Neural Networks
    • 10.4 Text Preprocessing
    • 10.5 Implementation of Recurrent Neural Networks from Scratch
    • 10.6 Concise Implementation of Recurrent Neural Networks
    • 10.7 Backpropagation Through Time
    • 10.8 Gated Recurrent Units (GRU)
    • 10.9 Long Short Term Memory (LSTM)
    • 10.10 Deep Recurrent Neural Networks
    • 10.11 Bidirectional Recurrent Neural Networks
    • 10.12 Machine Translation and DataSets
    • 10.13 Encoder-Decoder Architecture
    • 10.14 Sequence to Sequence
    • 10.15 Beam Search
  • Ch11 Attention Mechanism
    • 11.1 Attention Mechanism
    • 11.2 Sequence to Sequence with Attention Mechanism
    • 11.3 Transformer
  • Ch12 Optimization Algorithms
    • 12.1 Optimization and Deep Learning
    • 12.2 Convexity
    • 12.3 Gradient Descent
    • 12.4 Stochastic Gradient Descent
    • 12.5 Mini-batch Stochastic Gradient Descent
    • 12.6 Momentum
    • 12.7 Adagrad
    • 12.8 RMSProp
    • 12.9 Adadelta
    • 12.10 Adam

其中,每一小節都是可以執行的 Jupyter 記事本,你可以自由修改程式碼和超引數來獲取及時反饋,從而積累深度學習的實戰經驗。

目前,PyTorch 程式碼還有 6 個小節沒有完成,但整體的完成度已經很高了!開發團隊希望更多的愛好者加入進來,貢獻一份力量!

最後,再次附上 GitHub 地址:

https://github.com/dsgiitr/d2l-pytorch


相關文章