作者:xiaoyu
微信公眾號:Python資料科學
知乎:python資料分析師
最近在做幾個專案的資料分析,每次用到
seaborn
進行視覺化繪圖的時候總是忘記具體操作。雖然seaborn
的官方網站已經詳細的介紹了使用方法,但是畢竟是英文,而且查詢不是很方便。因此博主想從零開始將seaborn
學習一遍,做一個總結,也希望供大家使用參考。
Seaborn簡介
seaborn
同matplotlib
一樣,也是Python進行資料視覺化分析的重要第三方包。但seaborn
是在 matplotlib
的基礎上進行了更高階的API封裝,使得作圖更加容易,圖形更加漂亮。
博主並不認為seaborn
可以替代matplotlib
。雖然seaborn
可以滿足大部分情況下的資料分析需求,但是針對一些特殊情況,還是需要用到matplotlib
的。換句話說,matplotlib
更加靈活,可定製化,而seaborn
像是更高階的封裝,使用方便快捷。
應該把seaborn
視為matplotlib
的補充,而不是替代物。
Seaborn學習內容
seaborn
的學習內容主要包含以下幾個部分:
- 風格管理
- 繪圖風格設定
- 顏色風格設定
- 繪圖方法
- 資料集的分佈視覺化
- 分類資料視覺化
- 線性關係視覺化
- 結構網格
- 資料識別網格繪圖
本次將主要介紹風格管理的使用。
風格管理 - 繪圖風格設定
除了各種繪圖方式外,圖形的美觀程度可能是我們最關心的了。將它放到第一部分,因為風格設定是一些通用性的操作,對於各種繪圖方法都適用。
讓我們先看一個例子。
%matplotlib inline
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
np.random.seed(sum(map(ord, "aesthetics")))
複製程式碼
我們定義了一個簡單的方程來繪製一些偏置的正弦波,用來幫助我們檢視不同的圖畫風格是什麼樣子的。
def sinplot(flip=1):
x = np.linspace(0, 14, 100)
for i in range(1, 7):
plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)
複製程式碼
matplotlib
預設引數下繪製結果是這樣的:
sinplot()
複製程式碼
轉換為seaborn
預設繪圖,可以簡單的用set()
方法。
sns.set()
sinplot()
複製程式碼
Seaborn
將 matplotlib
的引數劃分為兩個獨立的組合。第一組是設定繪圖的外觀風格的,第二組主要將繪圖的各種元素按比例縮放的,以至可以嵌入到不同的背景環境中。
操控這些引數的介面主要有兩對方法:
- 控制風格:
axes_style()
,set_style()
- 縮放繪圖:
plotting_context()
,set_context()
每對方法中的第一個方法(axes_style()
, plotting_context()
)會返回一組字典引數,而第二個方法(set_style()
, set_context()
)會設定matplotlib的預設引數。
Seaborn的五種繪圖風格
有五種seaborn
的風格,它們分別是:darkgrid, whitegrid, dark, white, ticks。它們各自適合不同的應用和個人喜好。預設的主題是darkgrid。
sns.set_style("whitegrid")
data = np.random.normal(size=(20, 6)) + np.arange(6) / 2
sns.boxplot(data=data);
複製程式碼
sns.set_style("dark")
sinplot()
複製程式碼
sns.set_style("white")
sinplot()
複製程式碼
sns.set_style("ticks")
sinplot()
複製程式碼
移除軸脊柱
white 和 ticks兩個風格都能夠移除頂部和右側的不必要的軸脊柱。通過matplotlib
引數是做不到這一點的,但是你可以使用seaborn
的despine()
方法來移除它們:
sinplot()
sns.despine()
複製程式碼
一些繪圖也可以針對資料將軸脊柱進行偏置,當然也是通過呼叫despine()
方法來完成。而當刻度沒有完全覆蓋整個軸的範圍時,trim
引數可以用來限制已有脊柱的範圍。
f, ax = plt.subplots()
sns.violinplot(data=data)
sns.despine(offset=10, trim=True);
複製程式碼
你也可以通過despine()
控制哪個脊柱將被移除。
sns.set_style("whitegrid")
sns.boxplot(data=data, palette="deep")
sns.despine(left=True)
複製程式碼
臨時設定繪圖風格
雖然來回切換風格很容易,但是你也可以在一個with
語句中使用axes_style()
方法來臨時的設定繪圖引數。這也允許你用不同風格的軸來繪圖:
with sns.axes_style("darkgrid"):
plt.subplot(211)
sinplot()
plt.subplot(212)
sinplot(-1)
複製程式碼
覆蓋seaborn風格元素
如果你想定製化seaborn
風格,你可以將一個字典引數傳遞給axes_style()
和set_style()
的引數rc
。而且你只能通過這個方法來覆蓋風格定義中的部分引數。
如果你想要看看這些引數都是些什麼,可以呼叫這個方法,且無引數,這將會返回下面的設定:
sns.axes_style()
{'axes.axisbelow': True,
'axes.edgecolor': '.8',
'axes.facecolor': 'white',
'axes.grid': True,
'axes.labelcolor': '.15',
'axes.linewidth': 1.0,
'figure.facecolor': 'white',
'font.family': [u'sans-serif'],
'font.sans-serif': [u'Arial',
u'DejaVu Sans',
u'Liberation Sans',
u'Bitstream Vera Sans',
u'sans-serif'],
'grid.color': '.8',
'grid.linestyle': u'-',
'image.cmap': u'rocket',
'legend.frameon': False,
'legend.numpoints': 1,
'legend.scatterpoints': 1,
'lines.solid_capstyle': u'round',
'text.color': '.15',
'xtick.color': '.15',
'xtick.direction': u'out',
'xtick.major.size': 0.0,
'xtick.minor.size': 0.0,
'ytick.color': '.15',
'ytick.direction': u'out',
'ytick.major.size': 0.0,
'ytick.minor.size': 0.0}
複製程式碼
然後,你可以設定這些引數的不同版本了。
sns.set_style("darkgrid", {"axes.facecolor": ".9"})
sinplot()
複製程式碼
繪圖元素比例
有一套的引數可以控制繪圖元素的比例。
首先,讓我們通過set()
重置預設的引數:
sns.set()
複製程式碼
有四個預置的環境,按大小從小到大排列分別為:paper, notebook, talk, poster。其中,notebook是預設的。
sns.set_context("paper")
sinplot()
複製程式碼
sns.set_context("talk")
sinplot()
複製程式碼
sns.set_context("poster")
sinplot()
複製程式碼
你可以通過使用這些名字中的一個呼叫set_context()
來設定引數,並且你可以通過提供一個字典引數值來覆蓋引數。當改變環境時,你也可以獨立的去縮放字型元素的大小。
sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5})
sinplot()
複製程式碼
同樣的,你可以通過嵌入with
語句臨時的控制繪圖的比例。
總結
介紹了Seaborn的5中繪圖風格
- 移除軸脊柱
- 臨時設定繪圖風格
- 覆蓋Seaborn風格元素
- 繪圖元素比例縮放
下一節將會介紹顏色風格的使用。
關注微信公眾號Python資料科學,獲取 120G
人工智慧 學習資料。