PostgreSQL多值列的選擇性-Statistics,Cardinality,Selectivity,Estimate

德哥發表於2018-10-05

標籤

PostgreSQL , 多值列 , 選擇性評估 , Statistics , Cardinality , Selectivity , Estimate


背景

基於成本的優化器,選擇性估算是重要的環節,對於單值列,通過表的行數,資料分佈柱狀圖、高頻值、唯一值比例、空值比例等統計資訊(pg_class, pg_stats),以及使用者輸入的條件,可以估算得到輸入條件的選擇性。

對於多個條件的估算,之前PG給了比較暴力的AND,OR的疊加選擇性計算。

PG 10開始,支援多列統計資訊定義,從而提高了多列條件的選擇性評估精準度。

《PostgreSQL 10 黑科技 – 自定義統計資訊》

但是對於多值列,以及一些特殊的型別或操作符條件,過濾性的評估依舊有改進空間。

例如:

JSON型別的操作,範圍型別的操作,空間型別的評估等。

例如用於計算“包含”的選擇性如下:

postgres=# select oprname,oprleft::regtype,oprright::regtype,oprresult::regtype,oprrest from pg_operator where oprrest::text ~ `contsel`;  
 oprname | oprleft  | oprright | oprresult |   oprrest      
---------+----------+----------+-----------+--------------  
 <@      | polygon  | polygon  | boolean   | contsel  
 @>      | polygon  | polygon  | boolean   | contsel  
 <@      | box      | box      | boolean   | contsel  
 @>      | box      | box      | boolean   | contsel  
 <@      | point    | box      | boolean   | contsel  
 @>      | box      | point    | boolean   | contsel  
 <@      | point    | polygon  | boolean   | contsel  
 @>      | polygon  | point    | boolean   | contsel  
 <@      | point    | circle   | boolean   | contsel  
 @>      | circle   | point    | boolean   | contsel  
 <@      | circle   | circle   | boolean   | contsel  
 @>      | circle   | circle   | boolean   | contsel  
 &&      | anyarray | anyarray | boolean   | arraycontsel  
 @>      | anyarray | anyarray | boolean   | arraycontsel  
 <@      | anyarray | anyarray | boolean   | arraycontsel  
 @       | polygon  | polygon  | boolean   | contsel  
 ~       | polygon  | polygon  | boolean   | contsel  
 @       | box      | box      | boolean   | contsel  
 ~       | box      | box      | boolean   | contsel  
 @       | circle   | circle   | boolean   | contsel  
 ~       | circle   | circle   | boolean   | contsel  
 @>      | tsquery  | tsquery  | boolean   | contsel  
 <@      | tsquery  | tsquery  | boolean   | contsel  
 @@      | text     | text     | boolean   | contsel  
 @@      | text     | tsquery  | boolean   | contsel  
 -|-     | anyrange | anyrange | boolean   | contsel  
 @>      | jsonb    | jsonb    | boolean   | contsel  
 ?       | jsonb    | text     | boolean   | contsel  
 ?|      | jsonb    | text[]   | boolean   | contsel  
 ?&      | jsonb    | text[]   | boolean   | contsel  
 <@      | jsonb    | jsonb    | boolean   | contsel  
(31 rows)  

本文為轉載文章,分析了json型別選擇時,如何計算選擇性。

(目前此類為寫死的選擇性值,程式碼中已經給出了原因)。

src/backend/utils/adt/geo_selfuncs.c:contsel(PG_FUNCTION_ARGS)

/*  
 *      Selectivity functions for geometric operators.  These are bogus -- unless  
 *      we know the actual key distribution in the index, we can`t make a good  
 *      prediction of the selectivity of these operators.  
 *  
 *      Note: the values used here may look unreasonably small.  Perhaps they  
 *      are.  For now, we want to make sure that the optimizer will make use  
 *      of a geometric index if one is available, so the selectivity had better  
 *      be fairly small.  
 *  
 *      In general, GiST needs to search multiple subtrees in order to guarantee  
 *      that all occurrences of the same key have been found.  Because of this,  
 *      the estimated cost for scanning the index ought to be higher than the  
 *      output selectivity would indicate.  gistcostestimate(), over in selfuncs.c,  
 *      ought to be adjusted accordingly --- but until we can generate somewhat  
 *      realistic numbers here, it hardly matters...  
 */  
  
.........................  
  
/*  
 *      contsel -- How likely is a box to contain (be contained by) a given box?  
 *  
 * This is a tighter constraint than "overlap", so produce a smaller  
 * estimate than areasel does.  
 */  
  
Datum  
contsel(PG_FUNCTION_ARGS)  
{  
        PG_RETURN_FLOAT8(0.001);  
}  

陣列,由於陣列支援了柱狀圖,所以“包含”選擇性計算時,是基於統計資訊的。

src/backend/utils/adt/array_selfuncs.c:arraycontsel(PG_FUNCTION_ARGS)

/*  
 * arraycontsel -- restriction selectivity for array @>, &&, <@ operators  
 */  
Datum  
arraycontsel(PG_FUNCTION_ARGS)  
{  
        PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);  
        Oid                     operator = PG_GETARG_OID(1);  
        List       *args = (List *) PG_GETARG_POINTER(2);  
        int                     varRelid = PG_GETARG_INT32(3);  
        VariableStatData vardata;  
        Node       *other;  
        bool            varonleft;  
        Selectivity selec;  
        Oid                     element_typeid;  
  
        /*  
         * If expression is not (variable op something) or (something op  
         * variable), then punt and return a default estimate.  
         */  
        if (!get_restriction_variable(root, args, varRelid,  
                                                                  &vardata, &other, &varonleft))  
                PG_RETURN_FLOAT8(DEFAULT_SEL(operator));  
  
        /*  
         * Can`t do anything useful if the something is not a constant, either.  
         */  
        if (!IsA(other, Const))  
        {  
                ReleaseVariableStats(vardata);  
                PG_RETURN_FLOAT8(DEFAULT_SEL(operator));  
        }  
  
        /*  
         * The "&&", "@>" and "<@" operators are strict, so we can cope with a  
         * NULL constant right away.  
         */  
        if (((Const *) other)->constisnull)  
        {  
                ReleaseVariableStats(vardata);  
                PG_RETURN_FLOAT8(0.0);  
        }  
  
        /*  
         * If var is on the right, commute the operator, so that we can assume the  
         * var is on the left in what follows.  
         */  
        if (!varonleft)  
        {  
                if (operator == OID_ARRAY_CONTAINS_OP)  
                        operator = OID_ARRAY_CONTAINED_OP;  
                else if (operator == OID_ARRAY_CONTAINED_OP)  
                        operator = OID_ARRAY_CONTAINS_OP;  
        }  
  
        /*  
         * OK, there`s a Var and a Const we`re dealing with here.  We need the  
         * Const to be an array with same element type as column, else we can`t do  
         * anything useful.  (Such cases will likely fail at runtime, but here  
         * we`d rather just return a default estimate.)  
         */  
        element_typeid = get_base_element_type(((Const *) other)->consttype);  
        if (element_typeid != InvalidOid &&  
                element_typeid == get_base_element_type(vardata.vartype))  
        {  
                selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue,  
                                                                  element_typeid, operator);  
        }  
        else  
        {  
                selec = DEFAULT_SEL(operator);  
        }  
  
        ReleaseVariableStats(vardata);  
  
        CLAMP_PROBABILITY(selec);  
  
        PG_RETURN_FLOAT8((float8) selec);  
}  

原文

https://blog.anayrat.info/en/2017/11/26/postgresql—jsonb-and-statistics/

正文

Table of Contents

  • Statistics, cardinality, selectivity
  • Search on JSONB
    • Dataset
    • Operators and indexing for JSONB
    • Selectivity on JSONB
    • Diving in the code
  • Functional indexes
    • Creating the function and the index
    • Search using a function
    • Another example and selectivity calculation
  • Consequences of a bad estimate
  • Last word

Statistics, cardinality, selectivity

SQL is a declarative language. It is a language where the user asks what he wants. Without specifying how the computer should proceed to get the results.

It is the DBMS that must find “how” to perform the operation by ensuring:

  • Return the right result
  • Ideally, as soon as possible

“As soon as possible” means:

  • Minimize disk access
  • Give priority to sequential readings (especially important for mechanical disks)
  • Reduce the number of CPU operations
  • Reduce memory footprint

To do this, a DBMS has an optimizer whose role is to find the best execution plan.

PostgreSQL has an optimizer based on a cost mechanism. Without going into details, each operation has a unit cost (reading a sequential block, CPU processing of a record …). Postgres calculates the cost of several execution plans (if the query is simple) and chooses the least expensive.

How can postgres estimate the cost of a plan? By estimating the cost of each node of the plan based on statistics. PostgreSQL analyzes tables to obtain a statistical sample (this operation is normally performed by the autovacuum daemon).

Some words of vocabulary:

Cardinality: In set theory, it is the number of elements in a set. In databases, it will be the number of rows in a table or after applying a predicate.

Selectivity: Fraction of records returned after applying a predicate. For example, a table containing people and about one third of them are children. The selectivity of the predicate person = `child` will be 0.33.

If this table contains 300 people (this is the cardinality of the “people” set), we can estimate the number of children because we know that the predicate person = `child` is 0.33:

300 * 0.33 = 99  

These estimates can be obtained with EXPLAIN which displays the execution plan.

Example (simplified):

explain (analyze, timing off) select * from t1 WHERE c1=1;  
                                  QUERY PLAN  
------------------------------------------------------------------------------  
 Seq Scan on t1  (cost=0.00..5.75 rows=100 ...) (actual rows=100 ...)  
   Filter: (c1 = 1)  
   Rows Removed by Filter: 200  
(cost=0.00..5.75 rows=100 …) : Indicates the estimated cost and the estimated number of records (rows).  

(actual rows=100 …) : Indicates the number of records obtained.

PostgreSQL documentation provides examples of estimation calculations : Row Estimation Examples

It is quite easy to understand how to obtain estimates from scalar data types.

How are things going for particular types? For example JSON?

Search on JSONB

Dataset

As in previous articles, I used the stackoverflow dataset. I created a new table by aggregating data from multiple tables into a JSON object:

CREATE TABLE json_stack AS  
SELECT t.post_id,  
       row_to_json(t,  
                   TRUE)::jsonb json  
FROM  
  (SELECT posts.id post_id,  
          posts.owneruserid,  
          users.id,  
          title,  
          tags,  
          BODY,  
          displayname,  
          websiteurl,  
          LOCATION,  
          aboutme,  
          age  
   FROM posts  
   JOIN users ON posts.owneruserid = users.id) t;  

The processing is quite long because the two tables involved total nearly 40GB.

So I get a 40GB table that looks like this:

 dt+ json_stack  
                      List of relations  
 Schema |    Name    | Type  |  Owner   | Size  | Description  
--------+------------+-------+----------+-------+-------------  
 public | json_stack | table | postgres | 40 GB |  
(1 row)  
  
  
d json_stack  
             Table "public.json_stack"  
 Column  |  Type   | Collation | Nullable | Default  
---------+---------+-----------+----------+---------  
 post_id | integer |           |          |  
 json    | jsonb   |           |          |  
  
  
select post_id,jsonb_pretty(json) from json_stack  
    where json_displayname(json) = `anayrat` limit 1;  
 post_id  |  
----------+-----------------------------------------------------------------------------------------  
 26653490 | {  
          |     "id": 4197886,  
          |     "age": null,  
          |     "body": "<p>I have an issue with date filter. I follow [...]  
          |     "tags": "<java><logstash>",  
          |     "title": "Logstash date filter failed parsing",  
          |     "aboutme": "<p>Sysadmin, Postgres DBA</p>
",  
          |     "post_id": 26653490,  
          |     "location": "Valence",  
          |     "websiteurl": "https://blog.anayrat.info",  
          |     "displayname": "anayrat",  
          |     "owneruserid": 4197886  
          | }  

Operators and indexing for JSONB

PostgreSQL provides several operators for querying JSONB 1. We will use the operator @>.

It is also possible to index JSONB using GIN indexes:

create index ON json_stack using gin (json );  

Finally, here is an example of query:

explain (analyze,buffers)  select * from json_stack  
    where json @>  `{"displayname":"anayrat"}`::jsonb;  
                                  QUERY PLAN  
---------------------------------------------------------------------------------------  
 Bitmap Heap Scan on json_stack  
                (cost=286.95..33866.98 rows=33283 width=1011)  
                (actual time=0.099..0.102 rows=2 loops=1)  
   Recheck Cond: (json @> `{"displayname": "anayrat"}`::jsonb)  
   Heap Blocks: exact=2  
   Buffers: shared hit=17  
   ->  Bitmap Index Scan on json_stack_json_idx  
                          (cost=0.00..278.62 rows=33283 width=0)  
                          (actual time=0.092..0.092 rows=2 loops=1)  
         Index Cond: (json @> `{"displayname": "anayrat"}`::jsonb)  
         Buffers: shared hit=15  
 Planning time: 0.088 ms  
 Execution time: 0.121 ms  
(9 rows)  

Reading this plan we see that postgres is completely wrong. He estimates getting 33,283 lines, but the query returns only two rows. The error factor is around 15,000!

Selectivity on JSONB

What is the cardinality of the table? The information is contained in the system catalog:

select reltuples from pg_class where relname = `json_stack`;  
  reltuples  
-------------  
 3.32833e+07  

What is the estimated selectivity?

select 33283 / 3.32833e+07;  
        ?column?  
------------------------  
 0.00099999098647069251  

Arround 0.001.

Diving in the code

I had fun taking out the debugger GDB to find out where this number could come from. I ended up arriving in this function:

[...]  
79 /*  
80  *  contsel -- How likely is a box to contain (be contained by) a given box?  
81  *  
82  * This is a tighter constraint than "overlap", so produce a smaller  
83  * estimate than areasel does.  
84  */  
85  
86 Datum  
87 contsel(PG_FUNCTION_ARGS)  
88 {  
89     PG_RETURN_FLOAT8(0.001);  
90 }  
[...]  

The selectivity depends on the type of the operator. Let’s look in the system catalog:

select oprname,typname,oprrest from pg_operator op  
    join pg_type typ ON op.oprleft= typ.oid where oprname = `@>`;  
 oprname | typname  |   oprrest  
---------+----------+--------------  
 @>      | polygon  | contsel  
 @>      | box      | contsel  
 @>      | box      | contsel  
 @>      | path     | -  
 @>      | polygon  | contsel  
 @>      | circle   | contsel  
 @>      | _aclitem | -  
 @>      | circle   | contsel  
 @>      | anyarray | arraycontsel  
 @>      | tsquery  | contsel  
 @>      | anyrange | rangesel  
 @>      | anyrange | rangesel  
 @>      | jsonb    | contsel  

There are several types, in fact the operator @> means (roughly): “Does the object on the left contain the right element?”. It is used for different types: geometry, array …

In our case, does the left JSONB object contain the ``{" displayname ":" anayrat "}`` element?

A JSON object is a special type. Determining the selectivity of an element would be quite complex. The comment is quite explicit:

 25 /*  
 26  *  Selectivity functions for geometric operators.  These are bogus -- unless  
 27  *  we know the actual key distribution in the index, we can`t make a good  
 28  *  prediction of the selectivity of these operators.  
 29  *  
 30  *  Note: the values used here may look unreasonably small.  Perhaps they  
 31  *  are.  For now, we want to make sure that the optimizer will make use  
 32  *  of a geometric index if one is available, so the selectivity had better  
 33  *  be fairly small.  
[...]  

It is therefore not possible (currently) to determine the selectivity of JSONB objects.

But all is not lost

Functional indexes

PostgreSQL permits to creates so-called functional indexes. We create an index on a fonction.

You’re going to say, “Yes, but we do not need it.” In your example, postgres is already using an index.

That’s right, the difference is that postgres collects statistics about this index. As if the result of the function was a new column.

Creating the function and the index

It is very simple :

CREATE or replace FUNCTION json_displayname (jsonb )  
RETURNS text  
AS $$  
select $1->>`displayname`  
$$  
LANGUAGE SQL IMMUTABLE PARALLEL SAFE  
;  
  
create index ON json_stack (json_displayname(json));  

Search using a function

To use the index we just created, use it in the query:

explain (analyze,verbose,buffers) select * from json_stack  
        where json_displayname(json) = `anayrat`;  
                        QUERY PLAN  
----------------------------------------------------------------------------  
 Index Scan using json_stack_json_displayname_idx on public.json_stack  
            (cost=0.56..371.70 rows=363 width=1011)  
            (actual time=0.021..0.023 rows=2 loops=1)  
   Output: post_id, json  
   Index Cond: ((json_stack.json ->> `displayname`::text) = `anayrat`::text)  
   Buffers: shared hit=7  
 Planning time: 0.107 ms  
 Execution time: 0.037 ms  
(6 rows)  

This time postgres estimates to get 363 rows, which is much closer to the final result (2).

Another example and selectivity calculation

This time we will search on the “age” field of the JSON object:

explain (analyze,buffers)  select * from json_stack  
      where json @>  `{"age":27}`::jsonb;  
                      QUERY PLAN  
---------------------------------------------------------------------  
 Bitmap Heap Scan on json_stack  
        (cost=286.95..33866.98 rows=33283 width=1011)  
        (actual time=667.411..12723.906 rows=804630 loops=1)  
   Recheck Cond: (json @> `{"age": 27}`::jsonb)  
   Rows Removed by Index Recheck: 2211190  
   Heap Blocks: exact=391448 lossy=344083  
   Buffers: shared hit=576350 read=881510  
   I/O Timings: read=2947.458  
   ->  Bitmap Index Scan on json_stack_json_idx  
        (cost=0.00..278.62 rows=33283 width=0)  
        (actual time=562.648..562.648 rows=804644 loops=1)  
         Index Cond: (json @> `{"age": 27}`::jsonb)  
         Buffers: shared hit=9612 read=5140  
         I/O Timings: read=11.195  
 Planning time: 0.073 ms  
 Execution time: 12809.392 ms  
(12 lignes)  
  
set work_mem = `100MB`;  
  
explain (analyze,buffers)  select * from json_stack  
      where json @>  `{"age":27}`::jsonb;  
                      QUERY PLAN  
---------------------------------------------------------------------  
 Bitmap Heap Scan on json_stack  
        (cost=286.95..33866.98 rows=33283 width=1011)  
        (actual time=748.968..5720.628 rows=804630 loops=1)  
   Recheck Cond: (json @> `{"age": 27}`::jsonb)  
   Rows Removed by Index Recheck: 14  
   Heap Blocks: exact=735531  
   Buffers: shared hit=123417 read=780542  
   I/O Timings: read=1550.124  
   ->  Bitmap Index Scan on json_stack_json_idx  
        (cost=0.00..278.62 rows=33283 width=0)  
        (actual time=545.553..545.553 rows=804644 loops=1)  
         Index Cond: (json @> `{"age": 27}`::jsonb)  
         Buffers: shared hit=9612 read=5140  
         I/O Timings: read=11.265  
 Planning time: 0.079 ms  
 Execution time: 5796.219 ms  
(12 lignes)  

In this example we see that postgres still estimates 33,283 records. Out he gets 804 644. This time he is too much optimistic.

P.S: In my example you will see that I run the same query by modifying work_mem. This is to prevent the bitmap from being lossy

As seen above we can create a function:

CREATE or replace FUNCTION json_age (jsonb )  
RETURNS text  
AS $$  
select $1->>`age`  
$$  
LANGUAGE SQL IMMUTABLE PARALLEL SAFE  
;  
  
create index ON json_stack (json_age(json));  

Again the estimate is much better:

explain (analyze,buffers)   select * from json_stack  
      where json_age(json) = `27`;  
                         QUERY PLAN  
------------------------------------------------------------------------  
 Index Scan using json_stack_json_age_idx on json_stack  
  (cost=0.56..733177.05 rows=799908 width=1011)  
  (actual time=0.042..2355.179 rows=804630 loops=1)  
   Index Cond: ((json ->> `age`::text) = `27`::text)  
   Buffers: shared read=737720  
   I/O Timings: read=1431.275  
 Planning time: 0.087 ms  
 Execution time: 2410.269 ms  

Postgres estimates to get 799,908 records. we will check it.

As I said, Postgres has statistics information based on a sample of data. This information is stored in a readable system catalog with the pg_stats view. With a functional index, Postgres sees it as a new column.

schemaname             | public  
tablename              | json_stack_json_age_idx  
attname                | json_age  
[...]  
most_common_vals       | {28,27,29,31,26,30,32,25,33,34,36,24,[...]}  
most_common_freqs      | {0.0248,0.0240333,0.0237333,0.0236333,0.0234,0.0229333,[...]}  
[...]  

The column most_common_vals contains the most common values and the column most_common_freqs the corresponding selectivity.

So for age = 27 we have a selectivity of 0.0240333.

這裡使用了表示式時,PostgreSQL 評估為一對一輸出,即輸入一個A值返回一個與A相關的值,所以計算選擇性可以使用原始列的柱狀圖。

《PostgreSQL 11 preview – 表示式索引柱狀圖bucketsSTATISTICSdefault_statistics_target可設定》

https://www.postgresql.org/docs/10/static/catalog-pg-proc.html

Then we just have to multiply the selectivity by the cardinality of the table:

select n_live_tup from pg_stat_all_tables where relname =`json_stack`;  
 n_live_tup  
------------  
   33283258  
  
  
select 0.0240333 * 33283258;  
    ?column?  
----------------  
 799906.5244914  

Okay, estimate is much better. But is it serious if postgres is wrong? In the two queries above we see that postgres uses an index and that the result is obtained quickly.

Consequences of a bad estimate

How can a bad estimate be a problem?

When that leads to the choice of a bad plan.

For example, this aggregation query that counts the number of posts by age:

explain (analyze,buffers)  select json->`age`,count(json->`age`)  
                          from json_stack group by json->`age` ;  
                             QUERY PLAN  
--------------------------------------------------------------------------------------  
 Finalize GroupAggregate  
  (cost=10067631.49..14135810.84 rows=33283256 width=40)  
  (actual time=364151.518..411524.862 rows=86 loops=1)  
   Group Key: ((json -> `age`::text))  
   Buffers: shared hit=1949354 read=1723941, temp read=1403174 written=1403189  
   I/O Timings: read=155401.828  
   ->  Gather Merge  
        (cost=10067631.49..13581089.91 rows=27736046 width=40)  
        (actual time=364151.056..411524.589 rows=256 loops=1)  
         Workers Planned: 2  
         Workers Launched: 2  
         Buffers: shared hit=1949354 read=1723941, temp read=1403174 written=1403189  
         I/O Timings: read=155401.828  
         ->  Partial GroupAggregate  
            (cost=10066631.46..10378661.98 rows=13868023 width=40)  
            (actual time=363797.836..409187.566 rows=85 loops=3)  
               Group Key: ((json -> `age`::text))  
               Buffers: shared hit=5843962 read=5177836,  
                        temp read=4212551 written=4212596  
               I/O Timings: read=478460.123  
               ->  Sort  
                  (cost=10066631.46..10101301.52 rows=13868023 width=1042)  
                  (actual time=299775.029..404358.743 rows=11094533 loops=3)  
                     Sort Key: ((json -> `age`::text))  
                     Sort Method: external merge  Disk: 11225392kB  
                     Buffers: shared hit=5843962 read=5177836,  
                              temp read=4212551 written=4212596  
                     I/O Timings: read=478460.123  
                     ->  Parallel Seq Scan on json_stack  
                        (cost=0.00..4791997.29 rows=13868023 width=1042)  
                        (actual time=0.684..202361.133 rows=11094533 loops=3)  
                           Buffers: shared hit=5843864 read=5177836  
                           I/O Timings: read=478460.123  
 Planning time: 0.080 ms  
 Execution time: 411688.165 ms  

Postgres expects to get 33,283,256 records instead of 86. It also performed a very expensive sort since it generated more than 33GB (11GB * 3 loops) of temporary files.

The same query using the json_age function:

explain (analyze,buffers)   select json_age(json),count(json_age(json))  
                              from json_stack group by json_age(json);  
                                             QUERY PLAN  
--------------------------------------------------------------------------------------  
 Finalize GroupAggregate  
  (cost=4897031.22..4897033.50 rows=83 width=40)  
  (actual time=153985.585..153985.667 rows=86 loops=1)  
   Group Key: ((json ->> `age`::text))  
   Buffers: shared hit=1938334 read=1736761  
   I/O Timings: read=106883.908  
   ->  Sort  
      (cost=4897031.22..4897031.64 rows=166 width=40)  
      (actual time=153985.581..153985.598 rows=256 loops=1)  
         Sort Key: ((json ->> `age`::text))  
         Sort Method: quicksort  Memory: 37kB  
         Buffers: shared hit=1938334 read=1736761  
         I/O Timings: read=106883.908  
         ->  Gather  
            (cost=4897007.46..4897025.10 rows=166 width=40)  
            (actual time=153985.264..153985.360 rows=256 loops=1)  
               Workers Planned: 2  
               Workers Launched: 2  
               Buffers: shared hit=1938334 read=1736761  
               I/O Timings: read=106883.908  
               ->  Partial HashAggregate  
                  (cost=4896007.46..4896008.50 rows=83 width=40)  
                  (actual time=153976.620..153976.635 rows=85 loops=3)  
                     Group Key: (json ->> `age`::text)  
                     Buffers: shared hit=5811206 read=5210494  
                     I/O Timings: read=320684.515  
                     ->  Parallel Seq Scan on json_stack  
                     (cost=0.00..4791997.29 rows=13868023 width=1042)  
                     (actual time=0.090..148691.566 rows=11094533 loops=3)  
                           Buffers: shared hit=5811206 read=5210494  
                           I/O Timings: read=320684.515  
 Planning time: 0.118 ms  
 Execution time: 154086.685 ms  

Here postgres sorts later on a lot less lines. The execution time is significantly reduced and we save especially 33GB of temporary files.

Last word

Statistics are essential for choosing the best execution plan. Currently Postgres has advanced features for JSON Unfortunately there is no possibility to add statistics on the JSONB type. Note that PostgreSQL 10 provides the infrastructure to extend statistics. Hopefully in the future it will be possible to extend them for special types.

In the meantime, it is possible to work around this limitation by using functional indexes.

1、https://www.postgresql.org/docs/current/static/functions-json.html
2、A bitmap node becomes lossy when postgres can not make a bitmap of all tuples. It thus passes in so-called “lossy” mode where the bitmap is no longer on the tuple but for the entire block. This requires reading more blocks and doing a “recheck” which consists in filtering obtained tuples. ^
3、The documentation is very complete and provides many examples: use of operators, indexing. ^

Related

PostgreSQL 10 : ICU & Abbreviated Keys

PostgreSQL 10 : Performances improvements

PGDay : How does Full Text Search works?

PostgreSQL 10 and Logical replication – Setup

PostgreSQL 10 and Logical replication – Overview


相關文章