題意
Sol
解題的關鍵是看到題目裡的提示。。。
設(f[i])表示到第(i)天所持有軟妹幣的最大數量,顯然答案為(max_{i = 1}^n f[i])
轉移為(f_i = max(f_{i – 1}, A_i frac{f_j R_j}{A_j R_j + B_j} + B_i frac{f_j}{A_j R_j + B_j}))
變形一下:
[frac{f_j}{B_i} – frac{f_j}{A_j R_j + B_j} = frac{A_i}{B_i} frac{f_j R_j}{A_j R_j + B_j}]
設(y_i = frac{f_j}{A_j R_j + B_j}, x_i = frac{f_j R_j}{A_j R_j + B_j})
顯然可以斜率優化,也就是拿一條斜率為(-frac{A_i}{B_i})的直線從上往下切。
但是這裡的斜率和(x)都是不單調的。
按照老祖宗說的
(x)不單調cdq
斜率不單調二分凸包
然後xjb寫一寫就好了。我寫的cdq複雜度是(O(nlog^2n))的,每次暴力建左側的凸包,然後在右邊二分,雖然很好寫,但是在BZOJ上成功T飛。。
看了下SovietPower大佬的部落格發現有nlogn的做法Orz,就是先按斜率排序,然後轉移的時候把下標分為(<mid)和(>= mid)的,直接用類似雙指標的東西掃就行了
#include<bits/stdc++.h>
#define Pair pair<double, double>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define db double
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << `
`;}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < `0` || c > `9`) {if(c == `-`) f = -1; c = getchar();}
while(c >= `0` && c <= `9`) x = x * 10 + c - `0`, c = getchar();
return x * f;
}
int N, S;
struct Sta {
int id;
db A, B, R, x, y, f;
void Get() {
x = f * R / (A * R + B);
y = f / (A * R + B);
}
bool operator < (const Sta &rhs) const {
return f < rhs.f;
}
}a[MAXN], st[MAXN];
vector<Pair> v;
double GetK(Pair a, Pair b) {
if((b.fi - a.fi) < eps) return INF;
return (b.se - a.se) / (b.fi - a.fi);
}
void GetConvexHull(int l, int r) {
v.clear();
for(int i = l; i <= r; i++) {
double x = a[i].x, y = a[i].y;
while(v.size() > 1 && ((GetK(v[v.size() - 1], MP(x, y)) > GetK(v[v.size() - 2], v[v.size() - 1])) )) v.pop_back();
v.push_back(MP(x, y));
}
}
int cnt = 0;
db Find(int id, db k) {
int l = 0, r = v.size() - 1, ans = 0;
while(l <= r) {
int mid = l + r >> 1;
if((mid == 0) || (GetK(v[mid - 1], v[mid]) > k)) l = mid + 1, ans = mid;
else r = mid - 1;
}
return a[id].A * v[ans].fi + a[id].B * v[ans].se;
}
db CDQ(int l, int r) {
if(l == r) {
int i = l;
chmax(a[i].f, a[i - 1].f);
chmax(a[i].f, a[i].f * ((a[i].A * a[i].R + a[i].B) / (a[i].A * a[i].R + a[i].B)));
a[l].Get();
return a[i].f;
}
int mid = l + r >> 1;
db lmx = CDQ(l, mid);
GetConvexHull(l, mid);
for(int i = mid + 1; i <= r; i++) chmax(a[i].f, max(lmx, Find(i, -a[i].A / a[i].B)));
CDQ(mid + 1, r);
int tl = l, tr = mid + 1, tot = tl - 1;
while(tl <= mid || tr <= r) {
if((tr > r) || (tl <= mid && a[tl].x < a[tr].x)) st[++tot] = a[tl++];//這裡要加上tl <= mid
else st[++tot] = a[tr++];
}
db rt = 0;
for(int i = l; i <= r; i++) a[i] = st[i], chmax(rt, a[i].f);
return rt;
}
signed main() {
// freopen("a.in", "r", stdin);
N = read(); S = read();
for(int i = 1; i <= N; i++) scanf("%lf %lf %lf", &a[i].A, &a[i].B, &a[i].R), a[i].id = i;
a[0].f = S;
CDQ(1, N);
db ans = 0;
for(int i = 1; i <= N; i++) chmax(ans, a[i].f);
printf("%.3lf", ans);
return 0;
}