彩票怎樣才能中獎?
理論上,只能靠運氣。但是,如果規則設計得不好,就可以鑽漏洞。
2005年2月,美國的一個彩票品種,就出現了漏洞,被麻省理工學院的學生發現了。隨後的七年,這個學生反覆購買這個品種,一共賺到了300萬美元。
本文介紹他怎麼做的,以及其中的數學原理。我依據的材料,主要來自數學教授 Jordan Ellenberg 在史丹佛大學的一次演講(Youtube)。
一、期望值
彩票最重要的數學概念,叫做"期望值"(expected value),即同一種行為多次重複以後,所能得到的平均收益。
舉例來說,如果每次抽獎需要2元,假設200次抽獎可以中獎一次,獎金為300元。那麼,你花了2000元,一共抽獎1000次,中獎了5次,獎金為1500元。
也就是說,1000次抽獎的總收益是1500元,每次的平均收益是1.5元,這就是期望值。它的計算公式如下。
期望值 = 300 * (1 / 200) + 0 * (199 / 200) = 1.5
期望值是1.5元,但是每次抽獎成本2元,於是淨虧損0.5元。
一看就知道,這個事情是不划算的,做得越多,越不划算。偶爾買一次彩票,倒也算了;如果你一天到晚不斷買彩票,就肯定會虧很多錢(上例是每200次虧100元)。
總之,期望值是衡量彩票收益的一個關鍵指標。
二、馬薩諸塞州的 WinFall 彩票
美國馬薩諸塞州有一個彩票品種,叫做 WinFall。它的規則很簡單:1到48裡面,你猜6個數字,猜中就有獎。
- 四等獎(6個猜中2個):獎金2元
- 三等獎(6個猜中3個):獎金5元
- 二等獎(6個猜中4個):獎金150元
- 一等獎(6個猜中5個):獎金4000元
- 特等獎(6個猜中6個):獎金池剩餘的全部獎金
有一期,一共賣出了930萬張彩票,其中特等獎一個,獎金100萬美元,一等獎238個,二等獎11625個,三等獎19.8萬個,四等獎136.8萬個。
計算可知,這種彩票的期望值是0.798元。
期望值 =
100萬 * ( 1 / 930萬) +
4000 * ( 238 / 930萬) +
150 * (11625 / 930萬) +
5 * (19.8萬 / 930萬) +
2 * (136.8萬 / 930萬 )
= 0.798
每張彩票的價格是2元,可是平均收益只有0.798元,連一半都不到,可見這種彩票是非常不划算的。因此沒有吸引力,購買這種彩票的民眾不斷減少。
州政府很著急,因為政府從彩票抽成20%(每張0.4元)。如果銷售量減少,政府的收益也會減少。於是,政府為了增加這種彩票的吸引力,決定修改彩票規則。
三、新規則
新的規則是,如果當期沒有特等獎(沒人猜中6個數字),那麼獎金會分配給一等獎、二等獎、三等獎的得主,各獎項新的中獎金額如下。
- 一等獎(6中5):50000元
- 二等獎(6中4):2385元
- 三等獎(6中3):60元
還是使用前面的中獎率,計算期望值。
期望值 =
50000 * ( 238 / 930萬) +
2385 * (11625 / 930萬) +
60 * (19.8萬 / 930萬) +
= 5.53
每張彩票的價格還是2元,但是期望值變成了5.53元。購買這種彩票就變得非常划算,大量購買的話, 可以得到2.5倍的收益。之所以期望值大於彩票的成本,是因為獎金池還包含前期剩餘的獎金。
麻省理工學院的一個學生,發現了這一點。他湊了5000元購買彩票,結果中了將近15000元!
四、如何選擇號碼?
現在我們知道,新規則的彩票是有利可圖的,可以大量購買。但是,還有一個問題,應該怎麼選擇號碼,才能保證收益?也就是說,48個號碼裡面,你應該選擇哪6個號碼,才能收益最大化?
畢竟你不能購買所有彩票,因為彩票的收益來自沒中獎的那些人。你只能購買一部分彩票,設法使得自己購買的號碼有最大的中獎可能。
為了簡化思考,讓我們考慮一種簡單的情況。1到7裡面猜三個數字,獎金如下。
- 猜中3個:獎金6元
- 猜中2個:獎金2元
- 猜中1個:無獎金
你可以同時選擇七種組合(即購買七張彩票),請問應該如何選擇號碼?
五、組合數公式
首先,讓我們考慮一下,1到7這七個數字裡面,三個數字的組合一共有多少種?這在數學裡面,叫做組合數公式。
組合數公式是指從 m 個不同元素中,取出 n(n ≤ m)個元素的所有組合的個數,用符號 c(m, n) 表示。
它的計算公式如下。
c(m, n) = m! / n! * (m - n)!
上面公式中,感嘆號表示階乘,比如4!
等於4 * 3 * 2 * 1
。
按照上面的定義,七個數字裡面的三個號碼的組合,共有c(7, 3)
個。
c(7, 3) = 7! / 3! * (7 - 3)! = 35
這就是說,三個數字的組合共有 35 種。我們可以把它們全部列出來。
123 124 125 126 127
134 135 136 137
145 146 147
156 157
167
234 235 236 237
245 246 247
256 257
267
345 346 347
356 357
367
456 457
467
567
上面是所有35種可能的組合,你必須從中選出7種。請問應該選擇哪七種?
六、最佳組合
答案是下面這七種組合。
123 145 167 247 256 346 357
這七張彩票能讓你的收益最大化。因為,不管最後的中獎號碼是什麼,它們可以保證你總是獲得6元獎金。如果中獎號碼是123,那麼你拿到頭獎6元;如果中獎號碼是367,那麼167、346、357這三張彩票各自猜中兩個號碼,你中了三個小獎,獎金總額也是6元。
仔細觀察這七張彩票,你會發現它們是精心選擇的:每個數字都正好出現三次。這導致你要麼中一個大獎,要麼中三個小獎。
七、幾何選擇法
這七張彩票是怎麼選出的呢?
有一種幾何方法,可以非常簡單地做到這一點。七個號碼就是七個點,把它們用直線連起來,每根線上只能有三個點,而每個點出現在三根線上。畫成上面的形狀,就得到了七根線(內部的圓也算一根線)。然後,記錄一下每根線上的號碼,很簡單就選出了七張彩票。
更嚴謹的證明是這樣的:1到7這七個數字,共有21種兩個數字的組合(C(7, 2)
),這意味著只要把這21種組合都買全了,就可以保證中三個小獎。因為三個中獎號碼裡面,共有三種兩個數字的組合(比如中獎號碼是367,那麼36、37、67都可以中小獎)。另一方面,由於每張彩票包含三個號碼,即包含三種兩個數字的組合,那麼最少只要買7張彩票就能覆蓋全部21種組合。
八、實際的策略
回到前面的問題,馬薩諸塞州的彩票應該怎麼買?
6個號碼只要猜中4個,就可以中二等獎,只要把所有四個號碼的組合都買了,就可以確保中15個二等獎(6箇中獎號碼共有15個四個號碼的組合C(6, 4)
)。
48個號碼裡面共有194580種四個號碼的組合(C(48, 4)
),既然一張彩票包含15種組合,那麼最少購買12972張彩票就夠了(194580 / 15 = 12972
),就可以包含所有四個號碼的組合。如果有興趣的話,你可以寫一個程式,算出包含這194580種組合的所有彩票。
購買12972張彩票,需要25944元(12972 * 2
)。根據前面的獎金額,二等獎的獎金是2385元,那麼15個二等獎就是35775元(2385 * 15
)。因此,投入25944元,可以無風險地獲得35775元。當然,這樣做的前提是,當期沒人猜中特等獎,否則獎金就會被大大稀釋。
(完)