Airflow使用入門指南
Airflow能做什麼
關注公眾號, 檢視更多 http://mp.weixin.qq.com/s/xPjXMc_6ssHt16J07BC7jA
Airflow是一個工作流分配管理系統,通過有向非迴圈圖的方式管理任務流程,設定任務依賴關係和時間排程。
Airflow獨立於我們要執行的任務,只需要把任務的名字和執行方式提供給Airflow作為一個task就可以。
安裝和使用
最簡單安裝
在Linux終端執行如下命令 (需要已安裝好python2.x
和pip
):
pip install airflow
pip install "airflow[crypto, password]"
安裝成功之後,執行下面三步,就可以使用了。預設是使用的SequentialExecutor
, 只能順次執行任務。
- 初始化資料庫
airflow initdb
[必須的步驟] - 啟動web伺服器
airflow webserver -p 8080
[方便視覺化管理dag] - 啟動任務
airflow scheduler
[scheduler啟動後,DAG目錄下的dags就會根據設定的時間定時啟動] - 此外我們還可以直接測試單個DAG,如測試文章末尾的DAG
airflow test ct1 print_date 2016-05-14
最新版本的Airflow可從https://github.com/apache/incubator-airflow下載獲得,解壓縮按照安裝python包的方式安裝。
配置 mysql
以啟用LocalExecutor
和CeleryExecutor
安裝mysql資料庫支援
yum install mysql mysql-server pip install airflow[mysql]
設定mysql根使用者的密碼
ct@server:~/airflow: mysql -uroot #以root身份登入mysql,預設無密碼 mysql> SET PASSWORD=PASSWORD("passwd"); mysql> FLUSH PRIVILEGES; # 注意sql語句末尾的分號
新建使用者和資料庫
# 新建名字為<airflow>的資料庫 mysql> CREATE DATABASE airflow; # 新建使用者`ct`,密碼為`152108`, 該使用者對資料庫`airflow`有完全操作許可權 mysql> GRANT all privileges on airflow.* TO 'ct'@'localhost' IDENTIFIED BY '152108'; mysql> FLUSH PRIVILEGES;
修改airflow配置檔案支援mysql
airflow.cfg
檔案通常在~/airflow
目錄下更改資料庫連結
sql_alchemy_conn = mysql://ct:152108@localhost/airflow 對應欄位解釋如下: dialect+driver://username:password@host:port/database
初始化資料庫
airflow initdb
初始化資料庫成功後,可進入mysql檢視新生成的資料表。
ct@server:~/airflow: mysql -uct -p152108 mysql> USE airflow; mysql> SHOW TABLES; +-------------------+ | Tables_in_airflow | +-------------------+ | alembic_version | | chart | | connection | | dag | | dag_pickle | | dag_run | | import_error | | job | | known_event | | known_event_type | | log | | sla_miss | | slot_pool | | task_instance | | users | | variable | | xcom | +-------------------+ 17 rows in set (0.00 sec)
centos7中使用mariadb取代了mysql, 但所有命令的執行相同
yum install mariadb mariadb-server systemctl start mariadb ==> 啟動mariadb systemctl enable mariadb ==> 開機自啟動 mysql_secure_installation ==> 設定 root密碼等相關 mysql -uroot -p123456 ==> 測試登入!
配置LocalExecutor
注:作為測試使用,此步可以跳過, 最後的生產環境用的是CeleryExecutor; 若CeleryExecutor配置不方便,也可使用LocalExecutor。
前面資料庫已經配置好了,所以如果想使用LocalExecutor就只需要修改airflow配置檔案就可以了。airflow.cfg
檔案通常在~/airflow
目錄下,開啟更改executor
為 executor = LocalExecutor
即完成了配置。
把文後TASK部分的dag檔案拷貝幾個到~/airflow/dags
目錄下,順次執行下面的命令,然後開啟網址http://127.0.0.1:8080就可以實時偵測任務動態了:
ct@server:~/airflow: airflow initdb` (若前面執行過,就跳過)
ct@server:~/airflow: airflow webserver --debug &
ct@server:~/airflow: airflow scheduler
配置CeleryExecutor (rabbitmq支援)
安裝airflow的celery和rabbitmq元件
pip install airflow[celery] pip install airflow[rabbitmq]
安裝erlang和rabbitmq
- 如果能直接使用
yum
或apt-get
安裝則萬事大吉。 - 我使用的CentOS6則不能,需要如下一番折騰,
# (Centos6,[REF](http://www.rabbitmq.com/install-rpm.html)) wget https://packages.erlang-solutions.com/erlang/esl-erlang/FLAVOUR_1_general/esl-erlang_18.3-1~centos~6_amd64.rpm yum install esl-erlang_18.3-1~centos~6_amd64.rpm wget https://github.com/jasonmcintosh/esl-erlang-compat/releases/download/1.1.1/esl-erlang-compat-18.1-1.noarch.rpm yum install esl-erlang-compat-18.1-1.noarch.rpm wget http://www.rabbitmq.com/releases/rabbitmq-server/v3.6.1/rabbitmq-server-3.6.1-1.noarch.rpm yum install rabbitmq-server-3.6.1-1.noarch.rpm
- 如果能直接使用
配置rabbitmq
- 啟動rabbitmq:
rabbitmq-server -detached
- 開機啟動rabbitmq:
chkconfig rabbitmq-server on
配置rabbitmq (REF)
rabbitmqctl add_user ct 152108 rabbitmqctl add_vhost ct_airflow rabbitmqctl set_user_tags ct airflow rabbitmqctl set_permissions -p ct_airflow ct ".*" ".*" ".*" rabbitmq-plugins enable rabbitmq_management # no usage
- 啟動rabbitmq:
修改airflow配置檔案支援Celery
airflow.cfg
檔案通常在~/airflow
目錄下更改executor為
executor = CeleryExecutor
-
broker_url = amqp://ct:152108@localhost:5672/ct_airflow Format explanation: transport://userid:password@hostname:port/virtual_host
-
# 可以與broker_url相同 celery_result_backend = amqp://ct:152108@localhost:5672/ct_airflow Format explanation: transport://userid:password@hostname:port/virtual_host
測試
- 啟動伺服器:
airflow webserver --debug
- 啟動celery worker (不能用根使用者):
airflow worker
- 啟動scheduler:
airflow scheduler
- 提示:
- 測試過程中注意觀察執行上面3個命令的3個視窗輸出的日誌
- 當遇到不符合常理的情況時考慮清空
airflow backend
的資料庫, 可使用airflow resetdb
清空。 - 刪除dag檔案後,webserver中可能還會存在相應資訊,這時需要重啟webserver並重新整理網頁。
- 關閉webserver:
ps -ef|grep -Ei '(airflow-webserver)'| grep master | awk '{print $2}'|xargs -i kill {}
- 啟動伺服器:
一個指令碼控制airflow系統的啟動和重啟
#!/bin/bash
#set -x
#set -e
set -u
usage()
{
cat <<EOF
${txtcyn}
Usage:
$0 options${txtrst}
${bldblu}Function${txtrst}:
This script is used to start or restart webserver service.
${txtbld}OPTIONS${txtrst}:
-S Start airflow system [${bldred}Default FALSE${txtrst}]
-s Restart airflow server only [${bldred}Default FALSE${txtrst}]
-a Restart all airflow programs including webserver, worker and
scheduler. [${bldred}Default FALSE${txtrst}]
EOF
}
start_all=
server_only=
all=
while getopts "hs:S:a:" OPTION
do
case $OPTION in
h)
usage
exit 1
;;
S)
start_all=$OPTARG
;;
s)
server_only=$OPTARG
;;
a)
all=$OPTARG
;;
?)
usage
exit 1
;;
esac
done
if [ -z "$server_only" ] && [ -z "$all" ] && [ -z "${start_all}" ]; then
usage
exit 1
fi
if [ "$server_only" == "TRUE" ]; then
ps -ef | grep -Ei '(airflow-webserver)' | grep master | \
awk '{print $2}' | xargs -i kill {}
cd ~/airflow/
nohup airflow webserver >webserver.log 2>&1 &
fi
if [ "$all" == "TRUE" ]; then
ps -ef | grep -Ei 'airflow' | grep -v 'grep' | awk '{print $2}' | xargs -i kill {}
cd ~/airflow/
nohup airflow webserver >>webserver.log 2>&1 &
nohup airflow worker >>worker.log 2>&1 &
nohup airflow scheduler >>scheduler.log 2>&1 &
fi
if [ "${start_all}" == "TRUE" ]; then
cd ~/airflow/
nohup airflow webserver >>webserver.log 2>&1 &
nohup airflow worker >>worker.log 2>&1 &
nohup airflow scheduler >>scheduler.log 2>&1 &
fi
airflow.cfg 其它配置
dags_folder
dags_folder
目錄支援子目錄和軟連線,因此不同的dag可以分門別類的儲存起來。設定郵件傳送服務
smtp_host = smtp.163.com smtp_starttls = True smtp_ssl = False smtp_user = username@163.com smtp_port = 25 smtp_password = userpasswd smtp_mail_from = username@163.com
多使用者登入設定 (似乎只有CeleryExecutor支援)
- 修改
airflow.cfg
中的下面3行配置
authenticate = True auth_backend = airflow.contrib.auth.backends.password_auth filter_by_owner = True
- 增加一個使用者(在airflow所在伺服器的python下執行)
import airflow from airflow import models, settings from airflow.contrib.auth.backends.password_auth import PasswordUser user = PasswordUser(models.User()) user.username = 'ehbio' user.email = 'mail@ehbio.com' user.password = 'ehbio' session = settings.Session() session.add(user) session.commit() session.close() exit()
- 修改
TASK
引數解釋
depends_on_past
Airflow assumes idempotent tasks that operate on immutable data
chunks. It also assumes that all task instance (each task for each
schedule) needs to run.If your tasks need to be executed sequentially, you need to
tell Airflow: use thedepends_on_past=True
flag on the tasks
that require sequential execution.)如果在TASK本該執行卻沒有執行時,或者設定的
interval
為@once
時,推薦使用depends_on_past=False
。我在執行dag時,有時會出現,明明上游任務已經執行結束,下游任務卻沒有啟動,整個dag就卡住了。這時設定depends_on_past=False
可以解決這類問題。timestamp
in format like2016-01-01T00:03:00
Task中呼叫的命令出錯後需要在網站
Graph view
中點選run
手動重啟。
為了方便任務修改後的順利執行,有個折衷的方法是:- 設定
email_on_retry: True
- 設定較長的
retry_delay
,方便在收到郵件後,能有時間做出處理 - 然後再修改為較短的
retry_delay
,方便快速啟動
- 設定
寫完task DAG後,一定記得先檢測下有無語法錯誤
python dag.py
測試檔案1:ct1.py
from airflow import DAG from airflow.operators import BashOperator, MySqlOperator from datetime import datetime, timedelta one_min_ago = datetime.combine(datetime.today() - timedelta(minutes=1), datetime.min.time()) default_args = { 'owner': 'airflow', #為了測試方便,起始時間一般為當前時間減去schedule_interval 'start_date': datatime(2016, 5, 29, 8, 30), 'email': ['chentong_biology@163.com'], 'email_on_failure': False, 'email_on_retry': False, 'depends_on_past': False, 'retries': 1, 'retry_delay': timedelta(minutes=5), #'queue': 'bash_queue', #'pool': 'backfill', #'priority_weight': 10, #'end_date': datetime(2016, 5, 29, 11, 30), } # DAG id 'ct1'必須在airflow中是unique的, 一般與檔名相同 # 多個使用者時可加使用者名稱做標記 dag = DAG('ct1', default_args=default_args, schedule_interval="@once") t1 = BashOperator( task_id='print_date', bash_command='date', dag=dag) #cmd = "/home/test/test.bash " 注意末尾的空格 t2 = BashOperator( task_id='echo', bash_command='echo "test" ', retries=3, dag=dag) templated_command = """ {% for i in range(2) %} echo "{{ ds }}" echo "{{ macros.ds_add(ds, 7) }}" echo "{{ params.my_param }}" {% endfor %} """ t3 = BashOperator( task_id='templated', bash_command=templated_command, params={'my_param': "Parameter I passed in"}, dag=dag) # This means that t2 will depend on t1 running successfully to run # It is equivalent to t1.set_downstream(t2) t2.set_upstream(t1) t3.set_upstream(t1) # all of this is equivalent to # dag.set_dependency('print_date', 'sleep') # dag.set_dependency('print_date', 'templated')
測試檔案2:
ct2.py
from airflow import DAG from airflow.operators import BashOperator from datetime import datetime, timedelta one_min_ago = datetime.combine(datetime.today() - timedelta(minutes=1), datetime.min.time()) default_args = { 'owner': 'airflow', 'depends_on_past': True, 'start_date': one_min_ago, 'email': ['chentong_biology@163.com'], 'email_on_failure': True, 'email_on_retry': True, 'retries': 5, 'retry_delay': timedelta(hours=30), #'queue': 'bash_queue', #'pool': 'backfill', #'priority_weight': 10, #'end_date': datetime(2016, 5, 29, 11, 30), } dag = DAG('ct2', default_args=default_args, schedule_interval="@once") t1 = BashOperator( task_id='run1', bash_command='(cd /home/ct/test; bash run1.sh -f ct_t1) ', dag=dag) t2 = BashOperator( task_id='run2', bash_command='(cd /home/ct/test; bash run2.sh -f ct_t1) ', dag=dag) t2.set_upstream(t1)
run1.sh
#!/bin/bash #set -x set -e set -u usage() { cat <<EOF ${txtcyn} Usage: $0 options${txtrst} ${bldblu}Function${txtrst}: This script is used to do ********************. ${txtbld}OPTIONS${txtrst}: -f Data file ${bldred}[NECESSARY]${txtrst} -z Is there a header[${bldred}Default TRUE${txtrst}] EOF } file= header='TRUE' while getopts "hf:z:" OPTION do case $OPTION in h) usage exit 1 ;; f) file=$OPTARG ;; z) header=$OPTARG ;; ?) usage exit 1 ;; esac done if [ -z $file ]; then usage exit 1 fi cat <<END >$file A B C D E F G END sleep 20s
run2.sh
#!/bin/bash #set -x set -e set -u usage() { cat <<EOF ${txtcyn} Usage: $0 options${txtrst} ${bldblu}Function${txtrst}: This script is used to do ********************. ${txtbld}OPTIONS${txtrst}: -f Data file ${bldred}[NECESSARY]${txtrst} EOF } file= header='TRUE' while getopts "hf:z:" OPTION do case $OPTION in h) usage exit 1 ;; f) file=$OPTARG ;; ?) usage exit 1 ;; esac done if [ -z $file ]; then usage exit 1 fi awk 'BEGIN{OFS=FS="\t"}{print $0, "53"}' $file >${file}.out
其它問題
The DagRun object has room for a
conf
parameter that gets exposed
in the “context” (templates, operators, …). That is the place
where you would associate parameters to a specific run. For now this
is only possible in the context of an externally triggered DAG run.
The way theTriggerDagRunOperator
works, you can fill in the conf
param during the execution of the callable that you pass to the
operator.If you are looking to change the shape of your DAG through parameters,
we recommend doing that using “singleton” DAGs (using a “@once”
schedule_interval
), meaning that you would write a
Python program that generates multiple dag_ids, one of each run,
probably based on metadata stored in a config file or elsewhere.The idea is that if you use parameters to alter the shape of your
DAG, you break some of the assumptions around continuity of the
schedule. Things like visualizing the tree view or how to perform a
backfill becomes unclear and mushy. So if the shape of your DAG
changes radically based on parameters, we consider those to be
different DAGs, and you generate each one in your pipeline file.完全刪掉某個DAG的資訊
set @dag_id = 'BAD_DAG'; delete from airflow.xcom where dag_id = @dag_id; delete from airflow.task_instance where dag_id = @dag_id; delete from airflow.sla_miss where dag_id = @dag_id; delete from airflow.log where dag_id = @dag_id; delete from airflow.job where dag_id = @dag_id; delete from airflow.dag_run where dag_id = @dag_id; delete from airflow.dag where dag_id = @dag_id;
supervisord自動管理程式
[program:airflow_webserver] command=/usr/local/bin/python2.7 /usr/local/bin/airflow webserver user=airflow environment=AIRFLOW_HOME="/home/airflow/airflow", PATH="/usr/local/bin:%(ENV_PATH)s" stderr_logfile=/var/log/airflow-webserver.err.log stdout_logfile=/var/log/airflow-webserver.out.log [program:airflow_worker] command=/usr/local/bin/python2.7 /usr/local/bin/airflow worker user=airflow environment=AIRFLOW_HOME="/home/airflow/airflow", PATH="/usr/local/bin:%(ENV_PATH)s" stderr_logfile=/var/log/airflow-worker.err.log stdout_logfile=/var/log/airflow-worker.out.log [program:airflow_scheduler] command=/usr/local/bin/python2.7 /usr/local/bin/airflow scheduler user=airflow environment=AIRFLOW_HOME="/home/airflow/airflow", PATH="/usr/local/bin:%(ENV_PATH)s" stderr_logfile=/var/log/airflow-scheduler.err.log stdout_logfile=/var/log/airflow-scheduler.out.log
在特定情況下,修改DAG後,為了避免當前日期之前任務的執行,可以使用
backfill
填補特定時間段的任務airflow backfill -s START -e END --mark_success DAG_ID
埠轉發
之前的配置都是在內網伺服器進行的,但內網伺服器只開放了SSH埠22,因此
我嘗試在另外一臺電腦上使用相同的配置,然後設定埠轉發,把外網伺服器
的rabbitmq的5672埠對映到內網伺服器的對應埠,然後啟動airflow連線
。ssh -v -4 -NF -R 5672:127.0.0.1:5672 aliyun
上一條命令表示的格式為
ssh -R <local port>:<remote host>:<remote port> <SSH hostname>
local port
表示hostname的portRemote connections from LOCALHOST:5672 forwarded to local address 127.0.0.1:5672
-v: 在測試時開啟
- -4: 出現錯誤”bind: Cannot assign requested address”時,force the
ssh client to use ipv4 - 若出現”Warning: remote port forwarding failed for listen port 52698”
,關掉其它的ssh tunnel。
不同機器使用airflow
- 在外網伺服器(用做任務分發伺服器)配置與內網伺服器相同的airflow模組
- 使用前述的埠轉發以便外網伺服器繞過內網伺服器的防火牆訪問
rabbitmq 5672
埠。 - 在外網伺服器啟動 airflow
webserver
scheduler
, 在內網伺服器啟動
airflow worker
發現任務執行狀態丟失。繼續學習Celery,以解決此問題。
安裝redis (最後沒用到)
- http://download.redis.io/releases/redis-3.2.0.tar.gz
tar xvzf redis-3.2.0.tar.gz
andmake
redis-server
啟動redis- 使用
ps -ef | grep 'redis'
檢測後臺程式是否存在 - 檢測6379埠是否在監聽
netstat -lntp | grep 6379
任務未按預期執行可能的原因
- 檢查
start_date
和end_date
是否在合適的時間範圍內 - 檢查
airflow worker
,airflow scheduler
和
airflow webserver --debug
的輸出,有沒有某個任務執行異常 - 檢查airflow配置路徑中
logs
資料夾下的日誌輸出 - 若以上都沒有問題,則考慮資料衝突,解決方式包括清空資料庫或著給當前
dag
一個新的dag_id
References
- https://pythonhosted.org/airflow/
- http://kintoki.farbox.com/post/ji-chu-zhi-shi/airflow
- http://www.jianshu.com/p/59d69981658a
- http://bytepawn.com/luigi-airflow-pinball.html
- https://github.com/airbnb/airflow
- https://media.readthedocs.org/pdf/airflow/latest/airflow.pdf
- http://www.csdn.net/article/1970-01-01/2825690
- http://www.cnblogs.com/harrychinese/p/airflow.html
- https://segmentfault.com/a/1190000005078547
宣告
文章原寫於http://blog.genesino.com/2016/05/airflow/。轉載請註明出處。
相關文章
- 入門級TRIZ使用指南
- pip安裝和使用入門指南
- Flutter 入門之 ListTile 使用指南Flutter
- EOS 入門指南
- CodeMirror入門指南
- Vue 入門指南Vue
- MySQL 入門指南MySql
- Zookeeper入門指南
- RabbitMQ入門指南MQ
- CPack 入門指南
- Docker 入門指南Docker
- Markdown入門指南
- Vagrant 入門指南
- Spring入門指南Spring
- Nginx入門指南Nginx
- numpy入門指南
- 使用 Python 進行資料分析:入門指南Python
- ASP.Net Core 3.1 使用gRPC入門指南ASP.NETRPC
- Kubernetes Helm入門指南
- Markdown快速入門指南
- Vue 3入門指南Vue
- GitHub Actions 入門指南Github
- KNIME快速入門指南
- 混沌工程入門指南
- linux命令入門指南Linux
- SpringData 完全入門指南Spring
- Jupyter Notebook入門指南
- Helm使用者指南-系列(1)-序言+快速入門
- Java / JavaScript在TensorFlow中的入門使用指南JavaScript
- containerd容器執行時快速入門使用指南AI
- 【Android開發入門教程】三.Activity入門指南!Android
- Maven 教程之入門指南Maven
- 【入門指南】node.jsNode.js
- React實戰入門指南React
- SOAR 101 快速入門指南
- 容器快速入門完全指南
- [譯] 以太坊入門指南
- alertmanager告警快速入門指南
- 故障測試入門指南