南科大翁文康:「量子霸權」的基礎概念和可行方案

機器之心發表於2018-07-27

《國家科學評論》(NSR)近日發表了南方科技大學物理系副教授翁文康撰寫的短篇綜述論文《量子霸權:一些基本概念》,討論了量子霸權相關的一些基礎概念和可行方案。機器之心對該論文進行了全文編譯。

論文:Quantum supremacy: some fundamental concepts 

南科大翁文康:「量子霸權」的基礎概念和可行方案

原文地址:https://doi.org/10.1093/nsr/nwy072

三十多年前,費曼設想只有利用量子計算才能有效解決量子問題 [1]。問題在於,我們如何證明量子計算相比於經典計算具有優勢?在比較量子計算機與經典計算機時,一個常見誤解是:量子位元可以表達一個包含指數數量狀態的疊加態,這是經典位元無法實現的。這種表述雖然是正確的,但卻沒告訴我們全部資訊,具體來說:究竟量子計算機能有效求解哪些經典計算機不能求解的問題?事實上,正是基於費曼發明的路徑積分技術,任意量子線路的輸出,比如躍遷幅度(transition amplitude),都存在一個經典的計算方法只需使用以多項式數量增長的記憶體去得到(儘管時間成本會呈指數增長)。因此,任意量子計算都可以用經典的方式模擬,關鍵的是時間上的效率問題。

目前已經有很多研究,試圖利用計算複雜性理論來判斷量子計算機的能力。尤其需要指出,可透過量子計算機有效求解的計算(決策)問題的類別被稱為 BQP(有界誤差量子多項式時間);對應的經典計算機能有效求解的問題被稱為 P(多項式時間)。當然,BQP 不會弱於 P;理論上量子計算機可以有效模擬經典計算機。但關鍵的問題是,如果無法證明 BQP 嚴格超過 P(即 BQP≠P),則量子計算的優越性基礎無法確立。從這個意義上看,這個問題就跟證明 P≠NP(非確定性多項式時間)這一著名難題一樣重要。

大數分解問題是一個著名的 NP 問題;Shor 的量子演算法能夠在多項式時間內進行大數分解,而迄今為止人類發現的最好的經典演算法也無法完成這一任務。嚴格來說,能有效進行大數分解的經典演算法也許存在,但是我們仍然不能嚴格排除這一可能性。同樣,儘管沒有證明,人們還是普遍相信量子計算機也無法求解某些 NP 問題。事實上,這個猜想(如果成立)的證明能提供 P≠NP 的可行證明途徑。

或許一類更容易解決的問題是:我們考慮量子計算機何時能夠執行某些明確(但不一定跟任何實際問題有關)的計算任務,這些任務在某個合理的時間內不能被當前任何經典計算機解決?這一狀態的實現被稱為「量子霸權(quantum supremacy)」[2]。有人可能會問,能提供平方加速的 Grover 搜尋演算法如何?我們能說 Grover 演算法實現了量子霸權嗎?問題在於,量子霸權並不是取 大 N 極限,而是要求我們確定需要多少個量子位元和量子門,經典計算機才沒有辦法在合理時間內模擬。

為了進一步闡述,我們先來談論兩個經典模擬的概念,即「強模擬(strong simulation)」和「弱模擬(weak simulation)」。強模擬是指在多項式時間內高精度地計算躍遷機率(或可觀測量的期望值)。弱模擬則要求精確地重現機率分佈,這涉及到從量子器件的輸出結果中取樣。某些量子線路雖然不能用經典的方法作有效的強模擬,但也許能進行有效的弱模擬。[3]

然而,我們應該注意模擬任務中的精度要求。比如說,對於很多決策問題而言,將躍遷幅度計算到加法誤差而非乘法誤差內可能就足夠了。換句話說,量子計算問題的經典可模擬性取決於精度要求。

目前,實現量子霸權有三種常見的模型(參見圖 1),即(i)玻色取樣 [4],(ii)IQP 線路取樣 [5],(iii)混沌量子線路取樣 [6]。這些方法的共同點在於,不同位元串或光子數的分佈都是從量子器件中取樣的。此外,它們全都假設經典計算機無法有效計算躍遷振幅,和/或重現(或近似)執行取樣的量子器件的分佈。這在強模擬和弱模擬兩方面都是如此。

南科大翁文康:「量子霸權」的基礎概念和可行方案

圖 1:三種實現量子霸權的不同方法。(a)玻色取樣,(b)IQP 線路,(c)混沌量子線路

在玻色取樣中,多個單光子被注入線性光學網路的不同模(mode)中,目標是確定輸出的光子分佈。玻色取樣的關鍵特徵是,躍遷振幅與復矩陣的積和式相關,而要準確計算或者把積和式近似到一個乘法誤差內一般來說是很難的——#P-hard 複雜度級別的難。此外,對玻色取樣的有效弱模擬被認為是不可能的,除非多項式層級(Polynomial Hierarchy)坍縮到第三級。但是,近期一項數值研究表明,要使用玻色取樣實現量子霸權,將需要同時生成至少 50 或更多個單光子,而這仍然是個很大的技術挑戰。

在玻色取樣的設定中,一個有趣的問題是:線性光學能否被應用於求解決策問題?在這種情況下,躍遷振幅可能只需要被確定到一個加法誤差。但是,我們發現,有一大類與玻色取樣相關的決策問題都可被經典計算機模擬 [7],這解決了 Aaronson 和 Hance 提出了一個開放問題 [9]。

IQP 線路代表著一種簡化的量子線路模型。線路的初始量子態都為零態: |000...0>,之後每個量子位元都被作用一個 Hadamard 門。接著,在這些量子位元上作用對角的門,最後再次在每個量子位元上作用 Hadamard 門。IQP 線路的經典複雜度證明與玻色取樣的情況類似。實際上,玻色取樣的複雜度證明是受 IQP 線路的複雜度結果啟發而得到的。當受到噪聲影響時,IQP 線路可能可以用經典方式模擬 [8]。

最後,混沌量子線路是指按特定規則作用兩位元門,以及隨機從某個集合中抽取並作用單位元門。這類線路的輸出機率接近所謂的 Porter-Thomas 分佈,這是量子混沌的一個特徵。近期已經出現了一些數值研究,旨在探索經典計算在模擬低深度量子線路中的極限。在理想情況下,為了對量子霸權進行基準評測,既需要考慮量子位元數,還需要考慮線路深度。然而,在有噪聲存在的情況下,高深度混沌量子線路也可能透過經典方式模擬 [10]。

最後,除了這三種方法,人們應該還能預見量子霸權可能在很多實際應用上實現,比如量子化學或量子機器學習。這一天什麼時候才會到來呢?耐心等待吧!

參考文獻:

[1] Feynman, R. P. Quantum mechanical computers. Found. Phys. 16, 507531 (1986). 

[2] Preskill, J. Quantum computing and the entanglement frontier. arXiv:1203.5813 (2012). 

[3] Nest, M. Van den. Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond. Quant. Inf. Comp. 10, 258-0271 (2010) 

[4] Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theory Comput. 9, 143252 (2013). 

[5] Bremner, M. J., Jozsa, R. & Shepherd, D. J. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. A 467, 459 (2011). 

[6] Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595 (2018).

[7] Yung, M.-H., Gao, X. & Huh, J. Universal Bound on Sampling Bosons in Linear Optics. arXiv:1608.00383 (2017). 

[8] Bremner, M. J., Montanaro, A. & Shepherd, D. J. Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum 1, 8 (2017). 

[9] Aaronson, S. & Hance, T. Generalizing and Derandomizing Gurvitss Approximation Algorithm for the Permanent. Quant. Inf. Comp. 14, 541 (2012) 

[10] Yung, M.-H. & Gao, X. Can Chaotic Quantum Circuits Maintain Quantum Supremacy under Noise? arXiv:1706.08913 (2017).

作者簡介:

翁文康,2002 和 2004 年在香港中文大學獲得物理學士與物理碩士學位。2003 年暑假到美國加州理工學院 (Caltech) 學習關於量子資訊理論的基礎。2004 年受邀請到英國牛津大學 (Oxford) 的材料系參加量子資訊的研發專案。隨後前往美國伊利諾伊大學 (UIUC) 進修物理學博士,並得到諾貝爾物理學獎得獎者 Anthony Leggett 教授指導博士論文,進行包含物理學與資訊科學的跨學科研究。畢業後三年多的時間在哈佛大學 (Harvard) 進行有關量子資訊和物理化學的博士後研究工作。2013 年 9 月回國並在清華大學 (Tsinghua) 交叉資訊研究院任職助理教授,併入選中組部青年千人計劃。2016 年 1 月任職南方科技大學 (SUSTech) 物理系副教授。

翁文康的學術工作主要集中於量子演算法的設計和量子模擬的研究,並取得了一系列重要的成果。其中以(共同)第一作者、或(共同)通訊作者身份在 Nature Photonics,Physical Review Letters,PNAS,Nature Communications,Science Advances 等國際著名刊物發表學術論文,並獲邀為 Ann. Rev. Phys. Chem,Advances in Chemical Physics 等權威雜誌撰寫綜述性文章。其中關於量子絕熱的研究結果 [Li&Yung (共同通訊作者) NJP 2014] 被 IOP Publishing 選為「IOPSelect」和被 New Journal of Physics 選為「Highlights of 2014」。

相關文章