JS演算法——十大排序演算法

Jsp發表於2018-05-29

常見的內部排序演算法有:插入排序、希爾排序、選擇排序、氣泡排序、歸併排序、快速排序、堆排序、基數排序等。

sort.png

一:氣泡排序

氣泡排序(Bubble Sort)也是一種簡單直觀的排序演算法。它重複地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重複地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢“浮”到數列的頂端。

演算法步驟:

  1. 比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。

  2. 對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。這步做完後,最後的元素會是最大的數。

  3. 針對所有的元素重複以上的步驟,除了最後一個。

  4. 持續每次對越來越少的元素重複上面的步驟,直到沒有任何一對數字需要比較。

function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len - 1; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相鄰元素兩兩對比
                var temp = arr[j+1];        // 元素交換
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}
複製程式碼

二:選擇排序

演算法步驟:

  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

  2. 再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。

  3. 重複第二步,直到所有元素均排序完畢。

function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     // 尋找最小的數
                minIndex = j;                 // 將最小數的索引儲存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
}複製程式碼

三:插入排序

演算法步驟:

  1. 將第一待排序序列第一個元素看做一個有序序列,把第二個元素到最後一個元素當成是未排序序列。

  2. 從頭到尾依次掃描未排序序列,將掃描到的每個元素插入有序序列的適當位置。(如果待插入的元素與有序序列中的某個元素相等,則將待插入元素插入到相等元素的後面。)

function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while(preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex+1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex+1] = current;
    }
    return arr;
}
複製程式碼

四:希爾排序

希爾排序,也稱遞減增量排序演算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序演算法。

希爾排序是基於插入排序的以下兩點性質而提出改進方法的:

  • 插入排序在對幾乎已經排好序的資料操作時,效率高,即可以達到線性排序的效率;
  • 但插入排序一般來說是低效的,因為插入排序每次只能將資料移動一位;

希爾排序的基本思想是:先將整個待排序的記錄序列分割成為若干子序列分別進行直接插入排序,待整個序列中的記錄“基本有序”時,再對全體記錄進行依次直接插入排序。

演算法步驟:

  1. 選擇一個增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

  2. 按增量序列個數 k,對序列進行 k 趟排序;

  3. 每趟排序,根據對應的增量 ti,將待排序列分割成若干長度為 m 的子序列,分別對各子表進行直接插入排序。僅增量因子為 1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。

//希爾排序
shellSort = function(arr){
    var len = arr.length;
    var index = Math.floor(len / 2);//得到比較步長
    var j, temp;
    while (index > 0){
        for (var i = index; i < len; i++){//遍歷起點後移,保證每個數在該步長下參與且只參與1此排序
            temp = arr[i];
            for (j = i; j >= index && arr[j - index] > temp;){//等步長數列執行插入排序
                arr[j] = arr[j - index];
                j -= index;
                arr[j] = temp;
            }
        }
        index = Math.floor(index / 2);//步長減半
    }
}

複製程式碼

五:歸併排序

歸併排序(Merge sort)是建立在歸併操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

作為一種典型的分而治之思想的演算法應用,歸併排序的實現由兩種方法:

  • 自上而下的遞迴(所有遞迴的方法都可以用迭代重寫,所以就有了第 2 種方法);
  • 自下而上的迭代;

演算法步驟:

  1. 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合併後的序列;

  2. 設定兩個指標,最初位置分別為兩個已經排序序列的起始位置;

  3. 比較兩個指標所指向的元素,選擇相對小的元素放入到合併空間,並移動指標到下一位置;

  4. 重複步驟 3 直到某一指標達到序列尾;

  5. 將另一序列剩下的所有元素直接複製到合併序列尾。

function mergeSort(arr) {  // 採用自上而下的遞迴方法
    var len = arr.length;
    if(len < 2) {
        return arr;
    }
    var middle = Math.floor(len / 2),
        left = arr.slice(0, middle),
        right = arr.slice(middle);
    return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right)
{
    var result = [];

    while (left.length && right.length) {
        if (left[0] <= right[0]) {
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }

    while (left.length)
        result.push(left.shift());

    while (right.length)
        result.push(right.shift());

    return result;
}
複製程式碼

六:快速排序

快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個專案要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部迴圈(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個序列(list)分為兩個子序列(sub-lists)。

快速排序又是一種分而治之思想在排序演算法上的典型應用。本質上來看,快速排序應該算是在氣泡排序基礎上的遞迴分治法。

演算法步驟:

  1. 從數列中挑出一個元素,稱為 “基準”(pivot);

  2. 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分割槽退出之後,該基準就處於數列的中間位置。這個稱為分割槽(partition)操作;

  3. 遞迴地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序;

function quickSort(array, left, right) {
  var partitionIndex,
      left = typeof left == 'number' ? left : 0,
      right = typeof right == 'number' ? right : array.length-1;
  if (left < right) {
    partitionIndex = partition(array, left, right);//切分的基準值
    quickSort(array, left, partitionIndex-1);
    quickSort(array, partitionIndex+1, right);
  }
  return array;
}
function partition(array, left ,right) {   //分割槽操作
  for (var i = left+1, j = left; i <= right; i++) {//j是較小值儲存位置的遊標
    array[i] < array[left] && swap(i, ++j, array);//以第一個元素為基準
  }
  swap(left, j, array);            //將第一個元素移至中間
  return j;
}
function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
複製程式碼

var quickSort = function(arr) {

  if (arr.length <= 1) { return arr; }

  var pivotIndex = Math.floor(arr.length / 2);

  var pivot = arr.splice(pivotIndex, 1)[0];

  var left = [];

  var right = [];

  for (var i = 0; i < arr.length; i++){

    if (arr[i] < pivot) {

      left.push(arr[i]);

    } else {

      right.push(arr[i]);

    }

  }

  return quickSort(left).concat([pivot], quickSort(right));

};


複製程式碼

七:堆排序

堆排序(Heapsort)是指利用堆這種資料結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

  1. 大頂堆:每個節點的值都大於或等於其子節點的值,在堆排序演算法中用於升序排列;
  2. 小頂堆:每個節點的值都小於或等於其子節點的值,在堆排序演算法中用於降序排列;

堆排序的平均時間複雜度為 Ο(nlogn)。

演算法步驟:

  • <1>.將初始待排序關鍵字序列(R1,R2....Rn)構建成大頂堆,此堆為初始的無序區;
  • <2>.將堆頂元素R[1]與最後一個元素R[n]交換,此時得到新的無序區(R1,R2,......Rn-1)和新的有序區(Rn),且滿足R[1,2...n-1]<=R[n];
  • <3>.由於交換後新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,......Rn-1)調整為新堆,然後再次將R[1]與無序區最後一個元素交換,得到新的無序區(R1,R2....Rn-2)和新的有序區(Rn-1,Rn)。不斷重複此過程直到有序區的元素個數為n-1,則整個排序過程完成。
  • /*方法說明:堆排序
    @param  array 待排序陣列*/
    function heapSort(array) {
        console.time('堆排序耗時');
        if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
            //建堆
            var heapSize = array.length, temp;
            for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) {
                heapify(array, i, heapSize);
            }
    
            //堆排序
            for (var j = heapSize - 1; j >= 1; j--) {
                temp = array[0];
                array[0] = array[j];
                array[j] = temp;
                heapify(array, 0, --heapSize);
            }
            console.timeEnd('堆排序耗時');
            return array;
        } else {
            return 'array is not an Array!';
        }
    }
    /*方法說明:維護堆的性質
    @param  arr 陣列
    @param  x   陣列下標
    @param  len 堆大小*/
    function heapify(arr, x, len) {
        if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') {
            var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp;
            if (l < len && arr[l] > arr[largest]) {
                largest = l;
            }
            if (r < len && arr[r] > arr[largest]) {
                largest = r;
            }
            if (largest != x) {
                temp = arr[x];
                arr[x] = arr[largest];
                arr[largest] = temp;
                heapify(arr, largest, len);
            }
        } else {
            return 'arr is not an Array or x is not a number!';
        }
    }
    var arr=[91,60,96,13,35,65,46,65,10,30,20,31,77,81,22];
    console.log(heapSort(arr));//[10, 13, 20, 22, 30, 31, 35, 46, 60, 65, 65, 77, 81, 91, 96]
    複製程式碼

    八:計數排序

    計數排序的核心在於將輸入的資料值轉化為鍵儲存在額外開闢的陣列空間中。作為一種線性時間複雜度的排序,計數排序要求輸入的資料必須是有確定範圍的整數。

    演算法步驟:

  • <1>. 找出待排序的陣列中最大和最小的元素;
  • <2>. 統計陣列中每個值為i的元素出現的次數,存入陣列C的第i項;
  • <3>. 對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);
  • <4>. 反向填充目標陣列:將每個元素i放在新陣列的第C(i)項,每放一個元素就將C(i)減去
  • function countingSort(arr, maxValue) {
        var bucket = new Array(maxValue+1),
            sortedIndex = 0;
            arrLen = arr.length,
            bucketLen = maxValue + 1;
    
        for (var i = 0; i < arrLen; i++) {
            if (!bucket[arr[i]]) {
                bucket[arr[i]] = 0;
            }
            bucket[arr[i]]++;
        }
    
        for (var j = 0; j < bucketLen; j++) {
            while(bucket[j] > 0) {
                arr[sortedIndex++] = j;
                bucket[j]--;
            }
        }
    
        return arr;
    }
    複製程式碼

    九:桶排序

    桶排序是計數排序的升級版。它利用了函式的對映關係,高效與否的關鍵就在於這個對映函式的確定。為了使桶排序更加高效,我們需要做到這兩點:

    1. 在額外空間充足的情況下,儘量增大桶的數量
    2. 使用的對映函式能夠將輸入的 N 個資料均勻的分配到 K 個桶中

    演算法步驟:

    • <1>.設定一個定量的陣列當作空桶;
    • <2>.遍歷輸入資料,並且把資料一個一個放到對應的桶裡去;
    • <3>.對每個不是空的桶進行排序;
    • <4>.從不是空的桶裡把排好序的資料拼接起來。

    function bucketSort(arr, bucketSize) {
        if (arr.length === 0) {
          return arr;
        }
    
        var i;
        var minValue = arr[0];
        var maxValue = arr[0];
        for (i = 1; i < arr.length; i++) {
          if (arr[i] < minValue) {
              minValue = arr[i];                // 輸入資料的最小值
          } else if (arr[i] > maxValue) {
              maxValue = arr[i];                // 輸入資料的最大值
          }
        }
    
        //桶的初始化
        var DEFAULT_BUCKET_SIZE = 5;            // 設定桶的預設數量為5
        bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
        var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;   
        var buckets = new Array(bucketCount);
        for (i = 0; i < buckets.length; i++) {
            buckets[i] = [];
        }
    
        //利用對映函式將資料分配到各個桶中
        for (i = 0; i < arr.length; i++) {
            buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
        }
    
        arr.length = 0;
        for (i = 0; i < buckets.length; i++) {
            insertionSort(buckets[i]);                      // 對每個桶進行排序,這裡使用了插入排序
            for (var j = 0; j < buckets[i].length; j++) {
                arr.push(buckets[i][j]);                      
            }
        }
    
        return arr;
    }
    複製程式碼

    十:基數排序

    基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的,先按低優先順序排序,再按高優先順序排序。最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。基數排序基於分別排序,分別收集,所以是穩定的。
    演算法步驟:
    • <1>.取得陣列中的最大數,並取得位數;
    • <2>.arr為原始陣列,從最低位開始取每個位組成radix陣列;
    • <3>.對radix進行計數排序(利用計數排序適用於小範圍數的特點)

    var counter = [];
    function radixSort(arr, maxDigit) {
        var mod = 10;
        var dev = 1;
        for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
            for(var j = 0; j < arr.length; j++) {
                var bucket = parseInt((arr[j] % mod) / dev);
                if(counter[bucket]==null) {
                    counter[bucket] = [];
                }
                counter[bucket].push(arr[j]);
            }
            var pos = 0;
            for(var j = 0; j < counter.length; j++) {
                var value = null;
                if(counter[j]!=null) {
                    while ((value = counter[j].shift()) != null) {
                          arr[pos++] = value;
                    }
              }
            }
        }
        return arr;
    }
    複製程式碼


    相關文章