2024 年,是 AI 領域讓人興奮的一年。在這一年中,各大科技公司、機構釋出了數不勝數的研究。
從年初的 Sora,到年尾 DeepSeek-V3,我們見證了 AI 一輪又一輪的轟炸,AI給我們帶來了意想不到的驚喜。
在這一年中,AI 論文被源源不斷的產出。對於剛剛過去的 2024 年,有哪些論文值得反覆閱讀?知名機器學習與 AI 研究者 Sebastian Raschka 整理了一份關於LLM 的閱讀清單,清單詳細介紹了每個月都有哪些重要論文產出。
原文連結:https://sebastianraschka.com/blog/2024/llm-research-papers-the-2024-list.html
一月論文
論文標題:Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models
論文連結:https://arxiv.org/abs/2401.00788
論文標題:A Comprehensive Study of Knowledge Editing for Large Language Models
論文連結:https://arxiv.org/abs/2401.01286
論文標題:LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning
論文連結:https://arxiv.org/abs/2401.01325
論文標題:Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models
論文連結:https://arxiv.org/abs/2401.01335
論文標題:LLaMA Beyond English: An Empirical Study on Language Capability Transfer
論文連結 https://arxiv.org/abs/2401.01055
論文標題:A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity
論文連結:https://arxiv.org/abs/2401.01967
論文標題:LLaMA Pro: Progressive LLaMA with Block Expansion
論文連結:https://arxiv.org/abs/2401.02415
論文標題:LLM Augmented LLMs: Expanding Capabilities through Composition
論文連結:https://arxiv.org/abs/2401.02412
論文標題: Blending Is All You Need: Cheaper, Better Alternative to Trillion-Parameters LLM
論文連結: https://arxiv.org/abs/2401.02994
論文標題:DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
論文連結:https://arxiv.org/abs/2401.02954
論文標題:Denoising Vision Transformers
論文連結:https://arxiv.org/abs/2401.02957
論文標題:Long Context Compression with Activation Beacon
論文連結:https://arxiv.org/abs/2401.03462
論文標題:Mixtral of Experts
論文連結: https://arxiv.org/abs/2401.04088
論文標題:MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts
論文連結:https://arxiv.org/abs/2401.04081
論文標題:A Minimaximalist Approach to Reinforcement Learning from Human Feedback
論文連結:https://arxiv.org/abs/2401.04056
論文標題:RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation
論文連結: https://arxiv.org/abs/2401.04679
論文標題: Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training
論文連結:https://arxiv.org/abs/2401.05566
論文標題:Transformers are Multi-State RNNs
論文連結:https://arxiv.org/abs/2401.06104
論文標題:A Closer Look at AUROC and AUPRC under Class Imbalance
論文連結:https://arxiv.org/abs/2401.06091
論文標題:An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models
論文連結:https://arxiv.org/abs/2401.06692
論文標題:Tuning Language Models by Proxy
論文連結: https://arxiv.org/abs/2401.08565
論文標題:Scalable Pre-training of Large Autoregressive Image Models
論文連結 https://arxiv.org/abs/2401.08541
論文標題:Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering
論文連結https://arxiv.org/abs/2401.08500
論文標題:RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture
論文連結: https://arxiv.org/abs/2401.08406
論文標題:ReFT: Reasoning with Reinforced Fine-Tuning
論文連結: https://arxiv.org/abs/2401.08967
論文標題:DiffusionGPT: LLM-Driven Text-to-Image Generation System
論文連結: https://arxiv.org/abs/2401.10061
論文標題:Self-Rewarding Language Models
論文連結:https://arxiv.org/abs/2401.10020
論文標題:VMamba: Visual State Space Model
論文連結: https://arxiv.org/abs/2401.10166
論文標題:Knowledge Fusion of Large Language Models
論文連結: https://arxiv.org/abs/2401.10491
論文標題:SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities
論文連結:https://arxiv.org/abs/2401.12168
論文標題:WARM: On the Benefits of Weight Averaged Reward Models
論文連結: https://arxiv.org/abs/2401.12187
論文標題: Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
論文連結: https://arxiv.org/abs/2401.12070
論文標題:MambaByte: Token-free Selective State Space Model
論文連結:https://arxiv.org/abs/2401.13660
論文標題:SpacTor-T5: Pre-training T5 Models with Span Corruption and Replaced Token Detection
論文連結:https://arxiv.org/abs/2401.13160
論文標題:Rethinking Patch Dependence for Masked Autoencoders
論文連結:https://arxiv.org/abs/2401.14391
論文標題:Pix2gestalt: Amodal Segmentation by Synthesizing Wholes
論文連結:https://arxiv.org/abs/2401.14398
論文標題:Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities
論文連結:https://arxiv.org/abs/2401.14405
論文標題:EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
論文連結:https://arxiv.org/abs/2401.15077
論文標題:MoE-LLaVA: Mixture of Experts for Large Vision-Language Models
論文連結:https://arxiv.org/abs/2401.15947
論文標題:Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling
論文連結: https://arxiv.org/abs/2401.16380
論文標題:KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
論文連結:https://arxiv.org/abs/2401.18079
二月論文
論文標題:Efficient Exploration for LLMs
論文連結:https://arxiv.org/abs/2402.00396
論文標題:OLMo: Accelerating the Science of Language Models
論文連結:https://arxiv.org/abs/2402.00838
論文標題:Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization?
論文連結:https://arxiv.org/abs/2402.00841
論文標題:Repeat After Me: Transformers are Better than State Space Models at Copying
論文連結:https://arxiv.org/abs/2402.01032
論文標題:LiPO: Listwise Preference Optimization through Learning-to-Rank
論文連結:https://arxiv.org/abs/2402.01878
論文標題:FindingEmo: An Image Dataset for Emotion Recognition in the Wild
論文連結: https://arxiv.org/abs/2402.01355
論文標題:More Agents Is All You Need
論文連結:https://arxiv.org/abs/2402.05120
論文標題:DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
論文連結: https://arxiv.org/abs/2402.03300
論文標題:MobileVLM V2: Faster and Stronger Baseline for Vision Language Model
論文連結: https://arxiv.org/abs/2402.03766
論文標題:A Phase Transition Between Positional and Semantic Learning in a Solvable Model of Dot-Product Attention
論文連結:https://arxiv.org/abs/2402.03902
論文標題:Scaling Laws for Downstream Task Performance of Large Language Models
論文連結:https://arxiv.org/abs/2402.04177
論文標題:MOMENT: A Family of Open Time-series Foundation Models
論文連結: https://arxiv.org/abs/2402.03885
論文標題:Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models
論文連結:https://arxiv.org/abs/2402.03749
論文標題:Self-Discover: Large Language Models Self-Compose Reasoning Structures
論文連結:https://arxiv.org/abs/2402.03620
論文標題:Grandmaster-Level Chess Without Search
論文連結: https://arxiv.org/abs/2402.04494
論文標題:Direct Language Model Alignment from Online AI Feedback
論文連結: https://arxiv.org/abs/2402.04792
論文標題:Buffer Overflow in Mixture of Experts
論文連結: https://arxiv.org/abs/2402.05526
論文標題:The Boundary of Neural Network Trainability is Fractal
論文連結: https://arxiv.org/abs/2402.06184
論文標題:ODIN: Disentangled Reward Mitigates Hacking in RLHF
論文連結: https://arxiv.org/abs/2402.07319
論文標題:Policy Improvement using Language Feedback Models
論文連結: https://arxiv.org/abs/2402.07876
論文標題:Scaling Laws for Fine-Grained Mixture of Experts
論文連結:https://arxiv.org/abs/2402.07871
論文標題:Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model
論文連結: https://arxiv.org/abs/2402.07610
論文標題:Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping
論文連結: https://arxiv.org/abs/2402.07610
論文標題:Suppressing Pink Elephants with Direct Principle Feedback
論文連結: https://arxiv.org/abs/2402.07896
論文標題:World Model on Million-Length Video And Language With RingAttention
論文連結:https://arxiv.org/abs/2402.08268
論文標題:Mixtures of Experts Unlock Parameter Scaling for Deep RL
論文連結: https://arxiv.org/abs/2402.08609
論文標題:DoRA: Weight-Decomposed Low-Rank Adaptation
論文連結:https://arxiv.org/abs/2402.09353
論文標題:Transformers Can Achieve Length Generalization But Not Robustly
論文連結: https://arxiv.org/abs/2402.09371
論文標題:BASE TTS: Lessons From Building a Billion-Parameter Text-to-Speech Model on 100K Hours of Data
論文連結:https://arxiv.org/abs/2402.08093
論文標題:Recovering the Pre-Fine-Tuning Weights of Generative Models
論文連結: https://arxiv.org/abs/2402.10208
論文標題:Generative Representational Instruction Tuning
論文連結: https://arxiv.org/abs/2402.09906
論文標題:FinTral: A Family of GPT-4 Level Multimodal Financial Large Language Models
論文連結: https://arxiv.org/abs/2402.10986
論文標題:OneBit: Towards Extremely Low-bit Large Language Models
論文連結: https://arxiv.org/abs/2402.11295
論文標題:LongAgent: Scaling Language Models to 128k Context through Multi-Agent Collaboration
論文連結:https://arxiv.org/abs/2402.11550
論文標題:Reformatted Alignment
論文連結: https://arxiv.org/abs/2402.12219
論文標題:AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
論文連結: https://arxiv.org/abs/2402.12226
論文標題:Towards Cross-Tokenizer Distillation: the Universal Logit Distillation Loss for LLMs
論文連結: https://arxiv.org/abs/2402.12030
論文標題:LoRA+: Efficient Low Rank Adaptation of Large Models
論文連結: https://arxiv.org/abs/2402.12354
論文標題:Neural Network Diffusion
論文連結: https://arxiv.org/abs/2402.13144
論文標題:YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
論文連結:https://arxiv.org/abs/2402.13616
論文標題:LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens
論文標題:https://arxiv.org/abs/2402.13753
論文標題:Large Language Models for Data Annotation: A Survey
論文連結:https://arxiv.org/abs/2402.13446
論文標題:TinyLLaVA: A Framework of Small-scale Large Multimodal Models
論文連結:https://arxiv.org/abs/2402.14289
論文標題:Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs
論文連結:https://arxiv.org/abs/2402.14740
論文標題: Genie: Generative Interactive Environments
論文連結:https://arxiv.org/abs/2402.15391
論文標題:CARTE: Pretraining and Transfer for Tabular Learning
論文連結:https://arxiv.org/abs/2402.16785
論文標題:The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
論文連結:https://arxiv.org/abs/2402.17764
論文標題:Sora Generates Videos with Stunning Geometrical Consistency
論文連結:https://arxiv.org/abs/2402.17403
論文標題:When Scaling Meets LLM Finetuning: The Effect of Data, Model and Finetuning Method
論文連結:https://arxiv.org/abs/2402.17193
論文標題:Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models
論文連結:https://arxiv.org/abs/2402.19427
三月論文
論文標題:Learning and Leveraging World Models in Visual Representation Learning
論文連結: https://arxiv.org/abs/2403.00504
論文標題:Improving LLM Code Generation with Grammar Augmentation
論文連結: https://arxiv.org/abs/2403.01632
論文標題:The Hidden Attention of Mamba Models
論文連結: https://arxiv.org/abs/2403.01590
論文標題:Training-Free Pretrained Model Merging
論文連結: https://arxiv.org/abs/2403.01753
論文標題:Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures
論文連結: https://arxiv.org/abs/2403.02308
論文標題:The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
論文連結:https://arxiv.org/abs/2403.03218
論文標題:Evolution Transformer: In-Context Evolutionary Optimization
論文連結: https://arxiv.org/abs/2403.02985
論文標題:Enhancing Vision-Language Pre-training with Rich Supervisions
論文連結: https://arxiv.org/abs/2403.03346
論文標題:Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
論文連結:https://arxiv.org/abs/2403.03206
論文標題:Design2Code: How Far Are We From Automating Front-End Engineering?
論文連結: https://arxiv.org/abs/2403.03163
論文標題:ShortGPT: Layers in Large Language Models are More Redundant Than You Expect
論文連結: https://arxiv.org/abs/2403.03853
論文標題:Backtracing: Retrieving the Cause of the Query
論文連結: https://arxiv.org/abs/2403.03956
論文標題:Learning to Decode Collaboratively with Multiple Language Models
論文連結: https://arxiv.org/abs/2403.03870
論文標題:SaulLM-7B: A pioneering Large Language Model for Law
論文連結: https://arxiv.org/abs/2403.03883
論文標題:Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious Challenges in Multimodal Reasoning
論文連結: https://arxiv.org/abs/2403.03864
論文標題:3D Diffusion Policy
論文連結: https://arxiv.org/abs/2403.03954
論文標題:MedMamba: Vision Mamba for Medical Image Classification
論文連結: https://arxiv.org/abs/2403.03849
論文標題:GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection
論文連結: https://arxiv.org/abs/2403.03507
論文標題:Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
論文連結: https://arxiv.org/abs/2403.03950
論文標題:How Far Are We from Intelligent Visual Deductive Reasoning?
論文連結:https://arxiv.org/abs/2403.04732
論文標題:Common 7B Language Models Already Possess Strong Math Capabilities
論文連結:https://arxiv.org/abs/2403.04706
論文標題:Gemini 1.5: Unlocking Multimodal Understanding Across Millions of Tokens of Context
論文連結: https://arxiv.org/abs/2403.05530
論文標題:Is Cosine-Similarity of Embeddings Really About Similarity?
論文連結:https://arxiv.org/abs/2403.05440
論文標題:LLM4Decompile: Decompiling Binary Code with Large Language Models
論文連結: https://arxiv.org/abs/2403.05286
論文標題:Algorithmic Progress in Language Models
論文連結:https://arxiv.org/abs/2403.05812
論文標題:Stealing Part of a Production Language Model
論文連結: https://arxiv.org/abs/2403.06634
論文標題:Chronos: Learning the Language of Time Series
論文連結:https://arxiv.org/abs/2403.07815
論文標題:Simple and Scalable Strategies to Continually Pre-train Large Language Models
論文連結:https://arxiv.org/abs/2403.08763
論文標題:Language Models Scale Reliably With Over-Training and on Downstream Tasks
論文連結:https://arxiv.org/abs/2403.08540
論文標題:BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences
論文連結:https://arxiv.org/abs/2403.09347
論文標題: LocalMamba: Visual State Space Model with Windowed Selective Scan
論文連結:https://arxiv.org/abs/2403.09338
論文標題:GiT: Towards Generalist Vision Transformer through Universal Language Interface
論文連結:https://arxiv.org/abs/2403.09394
論文標題:MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training
論文連結: https://arxiv.org/abs/2403.09611
論文標題: RAFT: Adapting Language Model to Domain Specific RAG
論文連結: https://arxiv.org/abs/2403.10131
論文標題:TnT-LLM: Text Mining at Scale with Large Language Models
論文連結: https://arxiv.org/abs/2403.12173
論文標題: Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression
論文連結: https://arxiv.org/abs/2403.15447
論文標題: PERL: Parameter Efficient Reinforcement Learning from Human Feedback
論文連結: https://arxiv.org/abs/2403.10704
論文標題:RewardBench: Evaluating Reward Models for Language Modeling
論文連結:https://arxiv.org/abs/2403.13787
論文標題:LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
論文連結: https://arxiv.org/abs/2403.13372
論文標題:RakutenAI-7B: Extending Large Language Models for Japanese
論文連結: https://arxiv.org/abs/2403.15484
論文標題:SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time Series
論文連結:https://arxiv.org/abs/2403.15360
論文標題:Can Large Language Models Explore In-Context?
論文連結:https://arxiv.org/abs/2403.15371
論文標題:LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
論文連結:https://arxiv.org/abs/2403.15042
論文標題: LLM Agent Operating System
論文連結:https://arxiv.org/abs/2403.16971
論文標題:The Unreasonable Ineffectiveness of the Deeper Layers
論文連結:https://arxiv.org/abs/2403.17887
論文標題:BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text
論文連結:https://arxiv.org/abs/2403.18421
論文標題:ViTAR: Vision Transformer with Any Resolution
論文連結:https://arxiv.org/abs/2403.18361
論文標題:Long-form Factuality in Large Language Models
論文連結:https://arxiv.org/abs/2403.18802
論文標題:Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models
論文連結: https://arxiv.org/abs/2403.18814
論文標題:LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning
論文連結:https://arxiv.org/abs/2403.17919
論文標題:Mechanistic Design and Scaling of Hybrid Architectures
論文連結:https://arxiv.org/abs/2403.17844
論文標題:MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions
論文連結:https://arxiv.org/abs/2403.19651
論文標題:Model Stock: All We Need Is Just a Few Fine-Tuned Models
論文連結:https://arxiv.org/abs/2403.19522
四月論文
論文標題: Do Language Models Plan Ahead for Future Tokens?
論文連結: https://arxiv.org/abs/2404.00859
論文標題:Bigger is not Always Better: Scaling Properties of Latent Diffusion Models
論文連結:https://arxiv.org/abs/2404.01367
論文標題:The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis
論文連結: https://arxiv.org/abs/2404.01204
論文標題:Diffusion-RWKV: Scaling RWKV-Like Architectures for Diffusion Models
論文連結:https://arxiv.org/abs/2404.04478
論文標題:Mixture-of-Depths: Dynamically Allocating Compute in Transformer-Based Language Models
論文連結:https://arxiv.org/abs/2404.02258
論文標題:Long-context LLMs Struggle with Long In-context Learning
論文連結:https://arxiv.org/abs/2404.02060
論文標題:Emergent Abilities in Reduced-Scale Generative Language Models
論文連結: https://arxiv.org/abs/2404.02204
論文標題:Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
論文連結: https://arxiv.org/abs/2404.02151
論文標題:On the Scalability of Diffusion-based Text-to-Image Generation
論文連結: https://arxiv.org/abs/2404.02883
論文標題:BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models
論文連結: https://arxiv.org/abs/2404.02827
論文標題:Cross-Attention Makes Inference Cumbersome in Text-to-Image Diffusion Models
論文連結: https://arxiv.org/abs/2404.02747
論文標題:Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
論文連結: https://arxiv.org/abs/2404.02151
論文標題:Training LLMs over Neurally Compressed Text
論文連結: https://arxiv.org/abs/2404.03626
論文標題:CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues
論文連結: https://arxiv.org/abs/2404.03820
論文標題:ReFT: Representation Finetuning for Language Models
論文連結: https://arxiv.org/abs/2404.03592
論文標題:Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data
論文連結: https://arxiv.org/abs/2404.03862
論文標題:Sigma: Siamese Mamba Network for Multi-Modal Semantic Segmentation
論文連結: https://arxiv.org/abs/2404.04256
論文標題:AutoCodeRover: Autonomous Program Improvement
論文連結: https://arxiv.org/abs/2404.05427
論文標題:Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence
論文連結: https://arxiv.org/abs/2404.05892
論文標題:CodecLM: Aligning Language Models with Tailored Synthetic Data
論文連結: https://arxiv.org/abs/2404.05875
論文標題:MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies
論文連結: https://arxiv.org/abs/2404.06395
論文標題:Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models
論文連結: https://arxiv.org/abs/2404.06209
論文標題:LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
論文連結: https://arxiv.org/abs/2404.05961
論文標題:Adapting LLaMA Decoder to Vision Transformer
論文連結: https://arxiv.org/abs/2404.06773
論文標題: Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
論文連結: https://arxiv.org/abs/2404.07143
論文標題:LLoCO: Learning Long Contexts Offline
論文連結: https://arxiv.org/abs/2404.07979
論文標題:JetMoE: Reaching Llama2 Performance with 0.1M Dollars
論文連結: https://arxiv.org/abs/2404.07413
論文標題: Best Practices and Lessons Learned on Synthetic Data for Language Models
論文連結: https://arxiv.org/abs/2404.07503
論文標題:Rho-1: Not All Tokens Are What You Need
論文連結: https://arxiv.org/abs/2404.07965
論文標題:Pre-training Small Base LMs with Fewer Tokens
論文連結: https://arxiv.org/abs/2404.08634
論文標題:Dataset Reset Policy Optimization for RLHF
論文連結: https://arxiv.org/abs/2404.08495
論文標題:LLM In-Context Recall is Prompt Dependent
論文連結: https://arxiv.org/abs/2404.08865
論文標題:State Space Model for New-Generation Network Alternative to Transformers: A Survey
論文連結: https://arxiv.org/abs/2404.09516
論文標題:Chinchilla Scaling: A Replication Attempt
論文連結: https://arxiv.org/abs/2404.10102
論文標題:Learn Your Reference Model for Real Good Alignment
論文連結: https://arxiv.org/abs/2404.09656
論文標題:Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
論文連結: https://arxiv.org/abs/2404.10719
論文標題:Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
論文連結: https://arxiv.org/abs/2404.08197
論文標題:How Faithful Are RAG Models? Quantifying the Tug-of-War Between RAG and LLMs’ Internal Prior
論文連結: https://arxiv.org/abs/2404.10198
論文標題:A Survey on Retrieval-Augmented Text Generation for Large Language Models
論文連結:https://arxiv.org/abs/2404.10981
論文標題:When LLMs are Unfit Use FastFit: Fast and Effective Text Classification with Many Classes
論文連結: https://arxiv.org/abs/2404.12365
論文標題:Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing
論文連結: https://arxiv.org/abs/2404.12253
論文標題:OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
論文連結: https://arxiv.org/abs/2404.12195
論文標題:The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
論文連結: https://arxiv.org/abs/2404.13208
論文標題:An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs
論文連結: https://arxiv.org/abs/2404.14047
論文標題:Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone
論文連結: https://arxiv.org/abs/2404.14219
論文標題: OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework
論文連結: https://arxiv.org/abs/2404.14619
論文標題: A Survey on Self-Evolution of Large Language Models
論文連結: https://arxiv.org/abs/2404.14662
論文標題: Multi-Head Mixture-of-Experts
論文連結: https://arxiv.org/abs/2404.15045
論文標題:NExT: Teaching Large Language Models to Reason about Code Execution
論文連結: https://arxiv.org/abs/2404.14662
論文標題:Graph Machine Learning in the Era of Large Language Models (LLMs)
論文連結: https://arxiv.org/abs/2404.14928
論文標題:Retrieval Head Mechanistically Explains Long-Context Factuality
論文連結: https://arxiv.org/abs/2404.15574
論文標題:Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding
論文連結: https://arxiv.org/abs/2404.16710
論文標題:Make Your LLM Fully Utilize the Context
論文連結:https://arxiv.org/abs/2404.16811
論文標題:LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical Report
論文連結: https://arxiv.org/abs/2405.00732
論文標題:Better & Faster Large Language Models via Multi-token Prediction
論文連結: https://arxiv.org/abs/2404.19737
論文標題:RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing
論文連結: https://arxiv.org/abs/2404.19543
論文標題:A Primer on the Inner Workings of Transformer-based Language Models
論文連結: https://arxiv.org/abs/2405.00208
論文標題:When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively
論文連結:https://arxiv.org/abs/2404.19705
論文標題:KAN: Kolmogorov–Arnold Networks
論文連結: https://arxiv.org/abs/2404.19756
五月論文
論文標題:Is Bigger Edit Batch Size Always Better? An Empirical Study on Model Editing with Llama-3
論文連結:https://arxiv.org/abs/2405.00664
論文標題:Self-Play Preference Optimization for Language Model Alignment
論文連結: https://arxiv.org/abs/2405.00675
論文標題:A Careful Examination of Large Language Model Performance on Grade School Arithmetic
論文連結: https://arxiv.org/abs/2405.00332
論文標題:Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models
論文連結: https://arxiv.org/abs/2405.01535
論文標題:What Matters When Building Vision-Language Models?
論文連結: https://arxiv.org/abs/2405.02246
論文標題:Is Flash Attention Stable?
論文連結:https://arxiv.org/abs/2405.02803
論文標題:vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention
論文連結: https://arxiv.org/abs/2405.04437
論文標題:xLSTM: Extended Long Short-Term Memory
論文連結:https://arxiv.org/abs/2405.04517
論文標題:You Only Cache Once: Decoder-Decoder Architectures for Language Models
論文連結: https://arxiv.org/abs/2405.05254
論文標題:DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
論文連結: https://arxiv.org/abs/2405.04434
論文標題:Fishing for Magikarp: Automatically Detecting Under-trained Tokens in Large Language Models
論文連結: https://arxiv.org/abs/2405.05417
論文標題:Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
論文連結:https://arxiv.org/abs/2405.05904
論文標題:Value Augmented Sampling for Language Model Alignment and Personalization
論文標題: https://arxiv.org/abs/2405.06639
論文標題:PHUDGE: Phi-3 as Scalable Judge
論文連結: https://arxiv.org/abs/2405.08029
論文標題:RLHF Workflow: From Reward Modeling to Online RLHF
論文連結:https://arxiv.org/abs/2405.07863
論文標題:LoRA Learns Less and Forgets Less
論文連結:https://arxiv.org/abs/2405.09673
論文標題:Xmodel-VLM: A Simple Baseline for Multimodal Vision Language Model
論文連結:https://arxiv.org/abs/2405.09215
論文標題:Chameleon: Mixed-Modal Early-Fusion Foundation Models
論文連結: https://arxiv.org/abs/2405.09818
論文標題:Towards Modular LLMs by Building and Reusing a Library of LoRAs
論文連結:https://arxiv.org/abs/2405.11157
論文標題:SLAB: Efficient Transformers with Simplified Linear Attention and Progressive Re-parameterized Batch Normalization
論文連結:https://arxiv.org/abs/2405.11582
論文標題:MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
論文連結:https://arxiv.org/abs/2405.12130
論文標題:Attention as an RNN
論文連結:https://arxiv.org/abs/2405.13956
論文標題:Dense Connector for MLLMs
論文連結: https://arxiv.org/abs/2405.13800
論文標題:AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
論文連結: https://arxiv.org/abs/2405.14129
論文標題: SimPO: Simple Preference Optimization with a Reference-Free Reward
論文連結: https://arxiv.org/abs/2405.14734
論文標題:Instruction Tuning With Loss Over Instructions
論文連結:https://arxiv.org/abs/2405.14394
論文標題:The Road Less Scheduled
論文連結:https://arxiv.org/abs/2405.15682
論文標題:Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training
論文連結: https://arxiv.org/abs/2405.15319
論文標題:gzip Predicts Data-dependent Scaling Laws
論文連結:https://arxiv.org/abs/2405.16684
論文標題:Trans-LoRA: Towards Data-free Transferable Parameter Efficient Finetuning
論文連結: https://arxiv.org/abs/2405.17258
論文標題:VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
論文連結:https://arxiv.org/abs/2405.17991
論文標題:LLaMA-NAS: Efficient Neural Architecture Search for Large Language Models
論文連結: https://arxiv.org/abs/2405.18377
論文標題:Contextual Position Encoding: Learning to Count What’s Important
論文連結:https://arxiv.org/abs/2405.18719
六月論文
論文標題:Show, Don’t Tell: Aligning Language Models with Demonstrated Feedback
論文連結: https://arxiv.org/abs/2406.00888
論文標題:Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models
論文連結:https://arxiv.org/abs/2406.06563
論文標題:OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models
論文連結:https://arxiv.org/abs/2406.01775
論文標題:The Geometry of Categorical and Hierarchical Concepts in Large Language Models
論文連結: https://arxiv.org/abs/2406.01506
論文標題:Towards Scalable Automated Alignment of LLMs: A Survey
論文連結:https://arxiv.org/abs/2406.01252
論文標題:Scalable MatMul-free Language Modeling
論文連結:https://arxiv.org/abs/2406.02528
論文標題:Block Transformer: Global-to-Local Language Modeling for Fast Inference
論文連結: https://arxiv.org/abs/2406.02657
論文標題:Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
論文連結:https://arxiv.org/abs/2406.04271
論文標題:The Prompt Report: A Systematic Survey of Prompting Techniques
論文連結: https://arxiv.org/abs/2406.06608
論文標題:Transformers Need Glasses! Information Over-Squashing in Language Tasks
論文連結: https://arxiv.org/abs/2406.04267
論文標題:Are We Done with MMLU?
論文連結:https://arxiv.org/abs/2406.04127
論文標題:Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step
論文連結: https://arxiv.org/abs/2406.04314
論文標題:Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach
論文連結: https://arxiv.org/abs/2406.04594
論文標題:CRAG – Comprehensive RAG Benchmark
論文連結:https://arxiv.org/abs/2406.04744
論文標題:WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
論文連結: https://arxiv.org/abs/2406.04770
論文標題:Mixture-of-Agents Enhances Large Language Model Capabilities
論文連結:https://arxiv.org/abs/2406.04692
論文標題:BERTs are Generative In-Context Learners
論文連結:https://arxiv.org/abs/2406.04823
論文標題:3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination
論文連結: https://arxiv.org/abs/2406.05132
論文標題:Creativity Has Left the Chat: The Price of Debiasing Language Models
論文連結:https://arxiv.org/abs/2406.05587
論文標題:Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation
論文連結: https://arxiv.org/abs/2406.06525
論文標題:Margin-aware Preference Optimization for Aligning Diffusion Models Without Reference
論文連結: https://arxiv.org/abs/2406.06424
論文標題:Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning
論文連結: https://arxiv.org/abs/2406.06469
論文標題: Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters
論文連結: https://arxiv.org/abs/2406.05955
論文標題:Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching
論文連結: https://arxiv.org/abs/2406.06326
論文標題:An Image is Worth 32 Tokens for Reconstruction and Generation
論文連結: https://arxiv.org/abs/2406.07550
論文標題:TextGrad: Automatic “Differentiation” via Text
論文連結:https://arxiv.org/abs/2406.07496
論文標題:Simple and Effective Masked Diffusion Language Models
論文連結:https://arxiv.org/abs/2406.07524
論文標題:Never Miss A Beat: An Efficient Recipe for Context Window Extension of Large Language Models with Consistent “Middle” Enhancement
論文連結:https://arxiv.org/abs/2406.07138
論文標題:Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
論文連結: https://arxiv.org/abs/2406.07522
論文標題:Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing
論文連結: https://arxiv.org/abs/2406.08464
論文標題:What If We Recaption Billions of Web Images with LLaMA-3?
論文連結:https://arxiv.org/abs/2406.08478
論文標題:Large Language Model Unlearning via Embedding-Corrupted Prompts
論文連結:https://arxiv.org/abs/2406.07933
論文標題:Large Language Models Must Be Taught to Know What They Don’t Know
論文連結: https://arxiv.org/abs/2406.08391
論文標題:An Empirical Study of Mamba-based Language Models
論文連結:https://arxiv.org/abs/2406.07887
論文標題: Discovering Preference Optimization Algorithms with and for Large Language Models
論文連結: https://arxiv.org/abs/2406.08414
論文標題:Transformers Meet Neural Algorithmic Reasoners
論文連結: https://arxiv.org/abs/2406.09308
論文標題:MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding
論文連結: https://arxiv.org/abs/2406.09297
論文標題:An Image is Worth More Than 16x16 Patches: Exploring Transformers on Individual Pixels
論文連結: https://arxiv.org/abs/2406.09415
論文標題:FouRA: Fourier Low Rank Adaptation
論文連結:https://arxiv.org/abs/2406.08798
論文標題: Bootstrapping Language Models with DPO Implicit Rewards
論文連結:https://arxiv.org/abs/2406.09760
論文標題:Be like a Goldfish, Don’t Memorize! Mitigating Memorization in Generative LLMs
論文連結: https://arxiv.org/abs/2406.10209
論文標題:Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs
論文連結: https://arxiv.org/abs/2406.10216
論文標題:THEANINE: Revisiting Memory Management in Long-term Conversations with Timeline-augmented Response Generation
論文連結:https://arxiv.org/abs/2406.10996
論文標題:Task Me Anything
論文連結: https://arxiv.org/abs/2406.11775
論文標題:How Do Large Language Models Acquire Factual Knowledge During Pretraining?
論文連結: https://arxiv.org/abs/2406.11813
論文標題:mDPO: Conditional Preference Optimization for Multimodal Large Language Models
論文連結: https://arxiv.org/abs/2406.11839
論文標題:Nemotron-4 340B Technical Report
論文連結:https://arxiv.org/abs/2406.11704
論文標題:DataComp-LM: In Search of the Next Generation of Training Sets for Language Models
論文連結:https://arxiv.org/abs/2406.11794
論文標題:Tokenization Falling Short: The Curse of Tokenization
論文連結: https://arxiv.org/abs/2406.11687
論文標題: DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
論文連結: https://arxiv.org/abs/2406.11931
論文標題:Unveiling Encoder-Free Vision-Language Models
論文連結:https://arxiv.org/abs/2406.11832
論文標題:Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level
論文連結: https://arxiv.org/abs/2406.11817
論文標題:HARE: HumAn pRiors, a key to small language model Efficiency
論文連結:https://arxiv.org/abs/2406.11410
論文標題:Measuring memorization in RLHF for code completion
論文連結: https://arxiv.org/abs/2406.11715
論文標題:Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
論文連結: https://arxiv.org/abs/2406.12034
論文標題:From RAGs to Rich Parameters: Probing How Language Models Utilize External Knowledge Over Parametric Information for Factual Queries
論文連結: https://arxiv.org/abs/2406.12824
論文標題:Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
論文連結: https://arxiv.org/abs/2406.12624
論文標題:Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
論文連結: https://arxiv.org/abs/2406.13121
論文標題:Instruction Pre-Training: Language Models are Supervised Multitask Learners
論文連結: https://arxiv.org/abs/2406.14491
論文標題:Can LLMs Learn by Teaching? A Preliminary Study
論文連結:https://arxiv.org/abs/2406.14629
論文標題:A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systems
論文連結:https://arxiv.org/abs/2406.14972
論文標題: LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs
論文連結: https://arxiv.org/abs/2406.15319
論文標題:MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression
論文連結: https://arxiv.org/abs/2406.14909
論文標題:Efficient Continual Pre-training by Mitigating the Stability Gap
論文連結:https://arxiv.org/abs/2406.14833
論文標題:Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers
論文連結: https://arxiv.org/abs/2406.16747
論文標題:WARP: On the Benefits of Weight Averaged Rewarded Policies
論文連結:https://arxiv.org/abs/2406.16768
論文標題:Adam-mini: Use Fewer Learning Rates To Gain More
論文連結:https://arxiv.org/abs/2406.16793
論文標題:The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
論文連結: https://arxiv.org/abs/2406.17557
論文標題:LongIns: A Challenging Long-context Instruction-based Exam for LLMs
論文連結: https://arxiv.org/abs/2406.17588
論文標題:Following Length Constraints in Instructions
論文連結:https://arxiv.org/abs/2406.17744
論文標題:A Closer Look into Mixture-of-Experts in Large Language Models
論文連結:https://arxiv.org/abs/2406.18219
論文標題: RouteLLM: Learning to Route LLMs with Preference Data
論文連結: https://arxiv.org/abs/2406.18665
論文標題:Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs
論文連結: https://arxiv.org/abs/2406.18629
論文標題:Dataset Size Recovery from LoRA Weights
論文連結: https://arxiv.org/abs/2406.19395
論文標題:From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data
論文連結: https://arxiv.org/abs/2406.19292
論文標題:Changing Answer Order Can Decrease MMLU Accuracy
論文連結: https://arxiv.org/abs/2406.19470
論文標題:Direct Preference Knowledge Distillation for Large Language Models
論文連結: https://arxiv.org/abs/2406.19774
論文標題:LLM Critics Help Catch LLM Bugs
論文連結:https://arxiv.org/abs/2407.00215
論文標題:Scaling Synthetic Data Creation with 1,000,000,000 Personas
論文連結: https://arxiv.org/abs/2406.20094
七月論文
論文標題:LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives
論文連結:https://arxiv.org/abs/2407.01490
論文標題:Searching for Best Practices in Retrieval-Augmented Generation
論文連結:https://arxiv.org/abs/2407.01219
論文標題:Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models
論文連結:https://arxiv.org/abs/2407.01906
論文標題:Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
論文連結:https://arxiv.org/abs/2407.01392
論文標題:Eliminating Position Bias of Language Models: A Mechanistic Approach
論文連結:https://arxiv.org/abs/2407.01100
論文標題:JMInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention
論文連結:https://arxiv.org/abs/2407.02490
論文標題:TokenPacker: Efficient Visual Projector for Multimodal LLM
論文連結:https://arxiv.org/abs/2407.02392
論文標題:Reasoning in Large Language Models: A Geometric Perspective
論文連結:https://arxiv.org/abs/2407.02678
論文標題:RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
論文連結:https://arxiv.org/abs/2407.02485
論文標題:AgentInstruct: Toward Generative Teaching with Agentic Flows
論文連結:https://arxiv.org/abs/2407.03502
論文標題:HEMM: Holistic Evaluation of Multimodal Foundation Models
論文連結:https://arxiv.org/abs/2407.03418
論文標題:Mixture of A Million Experts
論文連結:https://arxiv.org/abs/2407.04153
論文標題:Learning to (Learn at Test Time): RNNs with Expressive Hidden States
論文連結:https://arxiv.org/abs/2407.04620
論文標題:Vision Language Models Are Blind
論文連結:https://arxiv.org/abs/2407.06581
論文標題:Self-Recognition in Language Models
論文連結:https://arxiv.org/abs/2407.06946
論文標題:Inference Performance Optimization for Large Language Models on CPUs
論文連結:https://arxiv.org/abs/2407.07304
論文標題:Gradient Boosting Reinforcement Learning
論文連結:https://arxiv.org/abs/2407.08250
論文標題:FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision
論文連結:https://arxiv.org/abs/2407.08608
論文標題:SpreadsheetLLM: Encoding Spreadsheets for Large Language Models
論文連結:https://arxiv.org/abs/2407.09025
論文標題:New Desiderata for Direct Preference Optimization
論文連結:https://arxiv.org/abs/2407.09072
論文標題:Context Embeddings for Efficient Answer Generation in RAG
論文連結:https://arxiv.org/abs/2407.09252
論文標題:Qwen2 Technical Report
論文連結:https://arxiv.org/abs/2407.10671
論文標題:The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism
論文連結:https://arxiv.org/abs/2407.10457
論文標題:From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients
論文連結:https://arxiv.org/abs/2407.11239
論文標題:GoldFinch: High Performance RWKV/Transformer Hybrid with Linear Pre-Fill and Extreme KV-Cache Compression
論文連結:https://arxiv.org/abs/2407.12077
論文標題:Scaling Diffusion Transformers to 16 Billion Parameters
論文連結:https://arxiv.org/abs/2407.11633
論文標題:NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window?
論文連結:https://arxiv.org/abs/2407.11963
論文標題:Patch-Level Training for Large Language Models
論文連結:https://arxiv.org/abs/2407.12665
論文標題:LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
論文連結:https://arxiv.org/abs/2407.12772
論文標題:A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks
論文連結:https://arxiv.org/abs/2407.12994
論文標題:Spectra: A Comprehensive Study of Ternary, Quantized, and FP16 Language Models
論文連結:https://arxiv.org/abs/2407.12327
論文標題:Attention Overflow: Language Model Input Blur during Long-Context Missing Items Recommendation
論文連結:https://arxiv.org/abs/2407.13481
論文標題:Weak-to-Strong Reasoning
論文連結:https://arxiv.org/abs/2407.13647
論文標題:Understanding Reference Policies in Direct Preference Optimization
論文連結:https://arxiv.org/abs/2407.13709
論文標題:Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies
論文連結:https://arxiv.org/abs/2407.13623
論文標題:BOND: Aligning LLMs with Best-of-N Distillation
論文連結:https://arxiv.org/abs/2407.14622
論文標題:Compact Language Models via Pruning and Knowledge Distillation
論文連結:https://arxiv.org/abs/2407.14679
論文標題:LazyLLM: Dynamic Token Pruning for Efficient Long Context LLM Inference
論文連結:https://arxiv.org/abs/2407.14057
論文標題:Mini-Sequence Transformer: Optimizing Intermediate Memory for Long Sequences Training
論文連結:https://arxiv.org/abs/2407.15892
論文標題:DDK: Distilling Domain Knowledge for Efficient Large Language Models
論文連結:https://arxiv.org/abs/2407.16154
論文標題:Generation Constraint Scaling Can Mitigate Hallucination
論文連結:https://arxiv.org/abs/2407.16908
論文標題:Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach
論文連結:https://arxiv.org/abs/2407.16833
論文標題:Course-Correction: Safety Alignment Using Synthetic Preferences
論文連結:https://arxiv.org/abs/2407.16637
論文標題:Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?
論文連結:https://arxiv.org/abs/2407.16607
論文標題:Meta-Rewarding Language Models: Self-Improving Alignment with LLM-as-a-Meta-Judge
論文連結:https://arxiv.org/abs/2407.19594
論文標題:Improving Retrieval Augmented Language Model with Self-Reasoning
論文連結:https://arxiv.org/abs/2407.19813
論文標題:Apple Intelligence Foundation Language Models
論文連結:https://arxiv.org/abs/2407.21075
論文標題:ThinK: Thinner Key Cache by Query-Driven Pruning
論文連結:https://arxiv.org/abs/2407.21018
論文標題:The Llama 3 Herd of Models
論文連結:https://arxiv.org/abs/2407.21783
論文標題:Gemma 2: Improving Open Language Models at a Practical Size
論文連結:https://arxiv.org/abs/2408.00118
八月論文
論文標題:SAM 2: Segment Anything in Images and Videos
論文連結:https://arxiv.org/abs/2408.00714
論文標題:POA: Pre-training Once for Models of All Sizes
論文連結:https://arxiv.org/abs/2408.01031
論文標題:RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
論文連結:https://arxiv.org/abs/2408.01262
論文標題:A Survey of Mamba
論文連結:https://arxiv.org/abs/2408.01129
論文標題:MiniCPM-V: A GPT-4V Level MLLM on Your Phone
論文連結:https://arxiv.org/abs/2408.01800
論文標題:RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation
論文連結:https://arxiv.org/abs/2408.02545
論文標題:Self-Taught Evaluators
論文連結:https://arxiv.org/abs/2408.02666
論文標題:BioMamba: A Pre-trained Biomedical Language Representation Model Leveraging Mamba
論文連結:https://arxiv.org/abs/2408.02600
論文標題:EXAONE 3.0 7.8B Instruction Tuned Language Model
論文連結:https://arxiv.org/abs/2408.03541
論文標題:1.5-Pints Technical Report: Pretraining in Days, Not Months – Your Language Model Thrives on Quality Data
論文連結:https://arxiv.org/abs/2408.03506
論文標題:Conversational Prompt Engineering
論文連結:https://arxiv.org/abs/2408.04560
論文標題:Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP
論文連結:https://arxiv.org/abs/2408.04303
論文標題:The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery
論文連結:https://arxiv.org/abs/2408.06292
論文標題:Hermes 3 Technical Report
論文連結:https://arxiv.org/abs/2408.12570
論文標題:Customizing Language Models with Instance-wise LoRA for Sequential Recommendation
論文連結:https://arxiv.org/abs/2408.10159
論文標題:Enhancing Robustness in Large Language Models: Prompting for Mitigating the Impact of Irrelevant Information
論文連結:https://arxiv.org/abs/2408.10615
論文標題:To Code, or Not To Code? Exploring Impact of Code in Pre-training
論文連結:https://arxiv.org/abs/2408.10914
論文標題:LLM Pruning and Distillation in Practice: The Minitron Approach
論文連結:https://arxiv.org/abs/2408.11796
論文標題:Jamba-1.5: Hybrid Transformer-Mamba Models at Scale
論文連結:https://arxiv.org/abs/2408.12570
論文標題:Controllable Text Generation for Large Language Models: A Survey
論文連結:https://arxiv.org/abs/2408.12599
論文標題:Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time
論文連結:https://arxiv.org/abs/2408.13233
論文標題:A Practitioner's Guide to Continual Multimodal Pretraining
論文連結:https://arxiv.org/abs/2408.14471
論文標題:Building and better understanding vision-language models: insights and future directions
論文連結:https://arxiv.org/abs/2408.12637
論文標題:CURLoRA: Stable LLM Continual Fine-Tuning and Catastrophic Forgetting Mitigation
論文連結:https://arxiv.org/abs/2408.14572
論文標題:The Mamba in the Llama: Distilling and Accelerating Hybrid Models
論文連結:https://arxiv.org/abs/2408.15237
論文標題:ReMamba: Equip Mamba with Effective Long-Sequence Modeling
論文連結:https://arxiv.org/abs/2408.15496
論文標題:Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
論文連結:https://arxiv.org/abs/2408.16737
論文標題:LongRecipe: Recipe for Efficient Long Context Generalization in Large Languge Models
論文連結:https://arxiv.org/abs/2409.00509
九月論文
論文標題:OLMoE: Open Mixture-of-Experts Language Models
論文連結:https://arxiv.org/abs/2409.02060
論文標題:In Defense of RAG in the Era of Long-Context Language Models
論文連結:https://arxiv.org/abs/2409.01666
論文標題:Attention Heads of Large Language Models: A Survey
論文連結:https://arxiv.org/abs/2409.03752
論文標題:LongCite: Enabling LLMs to Generate Fine-grained Citations in Long-context QA
論文連結:https://arxiv.org/abs/2409.02897
論文標題:How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data
論文連結:https://arxiv.org/abs/2409.03810
論文標題:Theory, Analysis, and Best Practices for Sigmoid Self-Attention
論文連結:https://arxiv.org/abs/2409.04431
論文標題:LLaMA-Omni: Seamless Speech Interaction with Large Language Models
論文連結:https://arxiv.org/abs/2409.06666
論文標題:What is the Role of Small Models in the LLM Era: A Survey
論文連結:https://arxiv.org/abs/2409.06857
論文標題:Policy Filtration in RLHF to Fine-Tune LLM for Code Generation
論文連結:https://arxiv.org/abs/2409.06957
論文標題:RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval
論文連結:https://arxiv.org/abs/2409.10516
論文標題:Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement
論文連結:https://arxiv.org/abs/2409.12122
論文標題:Qwen2.5-Coder Technical Report
論文連結:https://arxiv.org/abs/2409.12186
論文標題:Instruction Following without Instruction Tuning
論文連結:https://arxiv.org/abs/2409.14254
論文標題:Is Preference Alignment Always the Best Option to Enhance LLM-Based Translation? An Empirical Analysis
論文連結:https://arxiv.org/abs/2409.20059
論文標題:The Perfect Blend: Redefining RLHF with Mixture of Judges
論文連結:https://arxiv.org/abs/2409.20370
十月論文
論文標題:Addition is All You Need for Energy-efficient Language Models
論文連結:https://arxiv.org/abs/2410.00907
論文標題:Quantifying Generalization Complexity for Large Language Models
論文連結:https://arxiv.org/abs/2410.01769
論文標題:When a language model is optimized for reasoning, does it still show embers of autoregression? An analysis of OpenAI o1
論文連結:https://arxiv.org/abs/2410.01792
論文標題:Were RNNs All We Needed?
論文連結:https://arxiv.org/abs/2410.01201
論文標題:Selective Attention Improves Transformer
論文連結:https://arxiv.org/abs/2410.02703
論文標題:LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
論文連結:https://arxiv.org/abs/2410.02707
論文標題:LLaVA-Critic: Learning to Evaluate Multimodal Models
論文連結:https://arxiv.org/abs/2410.02712
論文標題:Differential Transformer
論文連結:https://arxiv.org/abs/2410.05258
論文標題:GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
論文連結:https://arxiv.org/abs/2410.05229
論文標題:ARIA: An Open Multimodal Native Mixture-of-Experts Model
論文連結:https://arxiv.org/abs/2410.05993
論文標題:O1 Replication Journey: A Strategic Progress Report – Part 1
論文連結:https://arxiv.org/abs/2410.18982
論文標題:Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG
論文連結:https://arxiv.org/abs/2410.05983
論文標題:From Generalist to Specialist: Adapting Vision Language Models via Task-Specific Visual Instruction Tuning
論文連結:https://arxiv.org/abs/2410.06456
論文標題:KV Prediction for Improved Time to First Token
論文連結:https://arxiv.org/abs/2410.08391
論文標題:Baichuan-Omni Technical Report
論文連結:https://arxiv.org/abs/2410.08565
論文標題:MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models
論文連結:https://arxiv.org/abs/2410.10139
論文標題:LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models
論文連結:https://arxiv.org/abs/2410.09732
論文標題:AFlow: Automating Agentic Workflow Generation
論文連結:https://arxiv.org/abs/2410.10762
論文標題:Toward General Instruction-Following Alignment for Retrieval-Augmented Generation
論文連結:https://arxiv.org/abs/2410.09584
論文標題:Pre-training Distillation for Large Language Models: A Design Space Exploration
論文連結:https://arxiv.org/abs/2410.16215
論文標題:MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models
論文連結:https://arxiv.org/abs/2410.17637
論文標題:Scalable Ranked Preference Optimization for Text-to-Image Generation
論文連結:https://arxiv.org/abs/2410.18013
論文標題:Scaling Diffusion Language Models via Adaptation from Autoregressive Models
論文連結:https://arxiv.org/abs/2410.17891
論文標題:Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback
論文連結:https://arxiv.org/abs/2410.19133
論文標題:Counting Ability of Large Language Models and Impact of Tokenization
論文連結:https://arxiv.org/abs/2410.19730
論文標題:A Survey of Small Language Models
論文連結:https://arxiv.org/abs/2410.20011
論文標題:Accelerating Direct Preference Optimization with Prefix Sharing
論文連結:https://arxiv.org/abs/2410.20305
論文標題:Mind Your Step (by Step): Chain-of-Thought can Reduce Performance on Tasks where Thinking Makes Humans Worse
論文連結:https://arxiv.org/abs/2410.21333
論文標題:LongReward: Improving Long-context Large Language Models with AI Feedback
論文連結:https://arxiv.org/abs/2410.21252
論文標題:ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
論文連結:https://arxiv.org/abs/2410.21465
論文標題:Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications
論文連結:https://arxiv.org/abs/2410.21943
論文標題:CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation
論文連結:https://arxiv.org/abs/2410.23090
論文標題:What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
論文連結:https://arxiv.org/abs/2410.23743
論文標題:GPT or BERT: why not both?
論文連結:https://arxiv.org/abs/2410.24159
論文標題:Language Models can Self-Lengthen to Generate Long Texts
論文連結:https://arxiv.org/abs/2410.23933
十一月論文
論文標題:Adding Error Bars to Evals: A Statistical Approach to Language Model Evaluations
論文連結:https://arxiv.org/abs/2411.00640
論文標題:Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation
論文連結:https://arxiv.org/abs/2411.00412
論文標題:Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models
論文連結:https://arxiv.org/abs/2411.00492
論文標題:Sample-Efficient Alignment for LLMs
論文連結:https://arxiv.org/abs/2411.01493
論文標題:A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness
論文連結:https://arxiv.org/abs/2411.03350
論文標題:"Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization
論文連結:https://arxiv.org/abs/2411.02355
論文標題:Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study
論文連結:https://arxiv.org/abs/2411.02462
論文標題:HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems
論文連結:https://arxiv.org/abs/2411.02959
論文標題:Both Text and Images Leaked! A Systematic Analysis of Multimodal LLM Data Contamination
論文連結:https://arxiv.org/abs/2411.03823
論文標題:Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding
論文連結:https://arxiv.org/abs/2411.04282
論文標題:Number Cookbook: Number Understanding of Language Models and How to Improve It
論文連結:https://arxiv.org/abs/2411.03766
論文標題:Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models
論文連結:https://arxiv.org/abs/2411.04996
論文標題:BitNet a4.8: 4-bit Activations for 1-bit LLMs
論文連結:https://arxiv.org/abs/2411.04965
論文標題:Scaling Laws for Precision
論文連結:https://arxiv.org/abs/2411.04330
論文標題:Energy Efficient Protein Language Models: Leveraging Small Language Models with LoRA for Controllable Protein Generation
論文連結:https://arxiv.org/abs/2411.05966
論文標題:Balancing Pipeline Parallelism with Vocabulary Parallelism
論文連結:https://arxiv.org/abs/2411.05288
論文標題:Toward Optimal Search and Retrieval for RAG
論文連結:https://arxiv.org/abs/2411.07396
論文標題:Large Language Models Can Self-Improve in Long-context Reasoning
論文連結:https://arxiv.org/abs/2411.08147
論文標題:Stronger Models are NOT Stronger Teachers for Instruction Tuning
論文連結:https://arxiv.org/abs/2411.07133
論文標題:Direct Preference Optimization Using Sparse Feature-Level Constraints
論文連結:https://arxiv.org/abs/2411.07618
論文標題:Cut Your Losses in Large-Vocabulary Language Models
論文連結:https://arxiv.org/abs/2411.09009
論文標題:Does Prompt Formatting Have Any Impact on LLM Performance?
論文連結:https://arxiv.org/abs/2411.10541
論文標題:SymDPO: Boosting In-Context Learning of Large Multimodal Models with Symbol Demonstration Direct Preference Optimization
論文連結:https://arxiv.org/abs/2411.11909
論文標題:SageAttention2 Technical Report: Accurate 4 Bit Attention for Plug-and-play Inference Acceleration
論文連結:https://arxiv.org/abs/2411.10958
論文標題:Bi-Mamba: Towards Accurate 1-Bit State Space Models
論文連結:https://arxiv.org/abs/2411.11843
論文標題:RedPajama: an Open Dataset for Training Large Language Models
論文連結:https://arxiv.org/abs/2411.12372
論文標題:Hymba: A Hybrid-head Architecture for Small Language Models
論文連結:https://arxiv.org/abs/2411.13676
論文標題:Loss-to-Loss Prediction: Scaling Laws for All Datasets
論文連結:https://arxiv.org/abs/2411.12925
論文標題:When Precision Meets Position: BFloat16 Breaks Down RoPE in Long-Context Training
論文連結:https://arxiv.org/abs/2411.13476
論文標題:Multimodal Autoregressive Pre-training of Large Vision Encoders
論文連結:https://arxiv.org/abs/2411.14402
論文標題:Natural Language Reinforcement Learning
論文連結:https://arxiv.org/abs/2411.14251
論文標題:Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
論文連結:https://arxiv.org/abs/2411.14982
論文標題:TÜLU 3: Pushing Frontiers in Open Language Model Post-Training
論文連結:https://arxiv.org/abs/2411.15124
論文標題:MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs
論文連結:https://arxiv.org/abs/2411.15296
論文標題:LLMs Do Not Think Step-by-step In Implicit Reasoning
論文連結:https://arxiv.org/abs/2411.15862
論文標題:O1 Replication Journey – Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?
論文連結:https://arxiv.org/abs/2411.16489
論文標題:Star Attention: Efficient LLM Inference over Long Sequences
論文連結:https://arxiv.org/abs/2411.17116
論文標題:Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens
論文連結:https://arxiv.org/abs/2411.17691
論文標題:Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration
論文連結:https://arxiv.org/abs/2411.17686
論文標題:Reverse Thinking Makes LLMs Stronger Reasoners
論文連結:https://arxiv.org/abs/2411.19865
論文標題:Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability
論文連結:https://arxiv.org/abs/2411.19943
十二月論文
論文標題:Designing Scale-Wise Transformers for Text-to-Image Synthesis
論文連結:https://arxiv.org/abs/2412.01819
論文標題:X-Prompt: Towards Universal In-Context Image Generation in Auto-Regressive Vision Language Foundation Models
論文連結:https://arxiv.org/abs/2412.01824
論文標題:Free Process Rewards without Process Labels
論文連結:https://arxiv.org/abs/2412.01981
論文標題:Scaling Image Tokenizers with Grouped Spherical Quantization
論文連結:https://arxiv.org/abs/2412.02632
論文標題:RARE: Retrieval-Augmented Reasoning Enhancement for Large Language Models
論文連結:https://arxiv.org/abs/2412.02830
論文標題:Perception Tokens Enhance Visual Reasoning in Multimodal Language Models
論文連結:https://arxiv.org/abs/2412.03548
論文標題:Evaluating Language Models as Synthetic Data Generators
論文連結:https://arxiv.org/abs/2412.03679
論文標題:Best-of-N Jailbreaking
論文連結:https://arxiv.org/abs/2412.03556
論文標題:PaliGemma 2: A Family of Versatile VLMs for Transfer
論文連結:https://arxiv.org/abs/2412.03555
論文標題:VisionZip: Longer is Better but Not Necessary in Vision Language Models
論文連結:https://arxiv.org/abs/2412.04467
論文標題:Evaluating and Aligning CodeLLMs on Human Preference
論文連結:https://arxiv.org/abs/2412.05210
論文標題:MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale
論文連結:https://arxiv.org/abs/2412.05237
論文標題:Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
論文連結:https://arxiv.org/abs/2412.05271
論文標題:LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
論文連結:https://arxiv.org/abs/2412.05579
論文標題:Does RLHF Scale? Exploring the Impacts From Data, Model, and Method
論文連結:https://arxiv.org/abs/2412.06000
論文標題:Unraveling the Complexity of Memory in RL Agents: An Approach for Classification and Evaluation
論文連結:https://arxiv.org/abs/2412.06531
論文標題:Training Large Language Models to Reason in a Continuous Latent Space
論文連結:https://arxiv.org/abs/2412.06769
論文標題:AutoReason: Automatic Few-Shot Reasoning Decomposition
論文連結:https://arxiv.org/abs/2412.06975
論文標題:Large Concept Models: Language Modeling in a Sentence Representation Space
論文連結:https://arxiv.org/abs/2412.08821
論文標題:Phi-4 Technical Report
論文連結:https://arxiv.org/abs/2412.08905
論文標題:Byte Latent Transformer: Patches Scale Better Than Tokens
論文連結:https://arxiv.org/abs/2412.09871
論文標題:SCBench: A KV Cache-Centric Analysis of Long-Context Methods
論文連結:https://arxiv.org/abs/2412.10319
論文標題:Cultural Evolution of Cooperation among LLM Agents
論文連結:https://arxiv.org/abs/2412.10270
論文標題:DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
論文連結:https://arxiv.org/abs/2412.10302
論文標題:No More Adam: Learning Rate Scaling at Initialization is All You Need
論文連結:https://arxiv.org/abs/2412.11768
論文標題:Precise Length Control in Large Language Models
論文連結:https://arxiv.org/abs/2412.11937
論文標題:The Open Source Advantage in Large Language Models (LLMs)
論文連結:https://arxiv.org/abs/2412.12004
論文標題:A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges
論文連結:https://arxiv.org/abs/2412.11936
論文標題:Are Your LLMs Capable of Stable Reasoning?
論文連結:https://arxiv.org/abs/2412.13147
論文標題:LLM Post-Training Recipes, Improving Reasoning in LLMs
論文連結:https://arxiv.org/abs/2412.14135
論文標題:Hansel: Output Length Controlling Framework for Large Language Models
論文連結:https://arxiv.org/abs/2412.14033
論文標題:Mind Your Theory: Theory of Mind Goes Deeper Than Reasoning
論文連結:https://arxiv.org/abs/2412.1363
論文標題:Alignment Faking in Large Language Models
論文連結:https://arxiv.org/abs/2412.14093
論文標題:SCOPE: Optimizing Key-Value Cache Compression in Long-Context Generation
論文連結:https://arxiv.org/abs/2412.13649
論文標題:LongBench v2: Towards Deeper Understanding and Reasoning on Realistic Long-Context Multitasks
論文連結:https://arxiv.org/abs/2412.15204
論文標題:Offline Reinforcement Learning for LLM Multi-Step Reasoning
論文連結:https://arxiv.org/abs/2412.16145
論文標題:Mulberry: Empowering MLLM with O1-like Reasoning and Reflection via Collective Monte Carlo Tree Search
論文連結:https://arxiv.org/abs/2412.18319