數字資訊化之遷移學習

王者歸來szh發表於2022-08-08
2022年數字資訊化培訓專案系列
關於舉辦“遷移學習(Transfer Learning)核心技術開發與應用研修班”的通知(
各企事業單位:
《國務院關於印發新一代人工智慧發展規劃的通知》指出:“新一代人工智慧重大科技專案,聚焦基礎理論和關鍵共性技術的前瞻佈局,包括研究大資料智慧、跨媒體感知計算、混合增強智慧、群體智慧、自主協同控制與決策等理論,研究知識計算引擎與知識服務技術、跨媒體分析推理技術、群體智慧關鍵技術、混合增強智慧新架構與新技術、自主無人控制技術等,開源共享人工智慧基礎理論和共性技術。”隨著人工智慧的發展,越來越多的機器學習應用場景的出現,現有表現比較好的監督學習需要大量的標註資料,標註資料是一項枯燥無味且花費巨大的任務,所以遷移學習受到越來越多的關注。遷移學習專注於儲存已有問題的解決模型,並將其利用在其他不同但相關問題上。比如說,用來辨識汽車的知識(或者是模型)也可以被用來提升識別卡車的能力。
為積極響應科研及工程人員的需求,根據《國務院關於推行終身職業技能培訓制度的意見》提出的“緊跟新技術、新職業發展變化,建立職業分類動態調整機制,加快職業標準開發工作”要求,中國管理科學研究院現代教育研究所( 中國管理科學研究院現代教育研究所)聯合北京龍騰亞太教育諮詢有限公司特舉辦“遷移學習(Transfer Learning)核心技術開發與應用研修班”。本次培訓採用實戰培訓模式。
主辦單位:中國管理科學研究院現代教育研究所
承辦單位:北京龍騰亞太教育諮詢有限公司、北京新鼎聚成文化傳媒有限公司
注:發票由具體承辦單位開具。
一、時間安排:  
2022年08月19日 — 2022年08月22日   線上直播
(19日下發上課所需材料,20日-22日上課)
中國管理科學研究院現代教育研究所           北京龍騰亞太教育諮詢有限公司
二〇二二年七月八日                          二〇二二年七月八日
二、培訓目標
1.深入瞭解神經網路的組成、訓練和實現,掌握深度空間特徵分佈等關鍵概念;
2.掌握遷移學習的思想與基本形式,瞭解傳統遷移學習的基本方法,對比各種方法的優缺點;
3.握深度遷移學習的思想與組成模組,學習深度遷移學習的各種方法;
4.掌握深度遷移學習的網路結構設計、目標函式設計的前沿方法,瞭解遷移學習在PDA、Source-Free DA上的應用;
5.掌握深度遷移學習在語義分割、目標檢測、行人重識別等任務中的應用,學習影像/影片風格遷移方法,瞭解風格遷移在實際生活中的應用;
6.掌握小樣本學習、Transformer等前沿方法和基本思想,瞭解小樣本學習、Transformer等在實際場景下的應用;
7.透過實操掌握圖片影片風格遷移,自動駕駛中的跨域語義分割,目標檢測。
三、培訓專家
來自中國科學院計算技術研究所、清華大學、北京理工大學等科研機構和大學的高階專家,擁有豐富的科研及工程技術經驗,長期從事深度學習、遷移學習、計算機視覺等領域的教學與研究工作。
四、參會物件:
各省市、自治區從事人工智慧、機器學習、深度學習、遷移學習、計算機視覺、自然語言處理、語音識別、影像處理、小樣本分析等領域相關的企事業單位技術骨幹、科研院所研究人員和大專院校相關專業教學人員及在校研究生等相關人員,以及深度遷移學習廣大愛好者。
五、費用標準:
1、4580元/人(含報名費、培訓費、資料費、證照費)。
2、培訓費由組織培訓班的施教機構負責收取並提供培訓發票。
3、報名成功後於一週內辦理匯款手續。
4、報名5人以上可享受9折優惠。
5、參加線上培訓學員均可享受影片錄播回放權益,及本人再次免費參加線下學習權益。
六、頒發證照:
參加相關培訓並透過考核的學員,由中國管理科學研究院現代教育研究所頒發《遷移學習核心技術開發與應用工程師》(高階)崗位認證證照,可透過官方網站查詢( 中國管理科學研究院現代教育研究所),該證照可作為有關單位專業技術人員能力評價、考核和任職的重要依據。
注:請學員將電子版彩照(大於20KB,紅藍底皆可)、身份證影印件和學歷證明覆印件傳送至2374914377@qq.com。
七、注意事項
1.指定報名郵箱:2374914377@qq.com。
2.報名成功後,會務組在上課前兩天發放上課所需所有材料。
3.學員需自備電腦WIN10電腦64位系統,16G及以上記憶體,硬碟空間預留100G。
八、具體課程安排
時間安排 大  綱 具體內容
第一天
9:00-12:00
14:00-17:00 一、機器學習簡介與經典機器學習演算法介紹 1.什麼是機器學習?
2.機器學習框架與基本組成
3.機器學習的訓練步驟
4.機器學習問題的分類
5.經典機器學習演算法介紹
章節目標:機器學習是人工智慧的重要技術之一,詳細瞭解機器學習的原理、機制和方法,為學習深度學習與遷移學習打下堅實的基礎。
二、深度學習簡介與經典網路結構介紹 1.神經網路簡介
2.神經網路元件簡介
3.神經網路訓練方法
4.卷積神經網路介紹
5.經典網路結構介紹
章節目標:深入瞭解神經網路的組成、訓練和實現,掌握深度空間特徵分佈等關鍵概念,為深度遷移學習奠定知識基礎。
三、遷移學習基礎 1.遷移學習緒論
2.基於樣本的遷移學習
3.基於特徵的遷移學習
4.基於分類器適配的遷移學習
章節目標:掌握遷移學習的思想與基本形式,瞭解傳統遷移學習的基本方法,對比各種方法的優缺點,掌握遷移學習的適用範圍。
四、深度遷移學習介紹 1.深度遷移學習概述
2.基於距離函式的深度遷移學習
3.基於對抗網路的深度遷移學習
4.深度異構遷移學習方法介紹
5.深度領域泛化學習介紹
章節目標:掌握深度遷移學習的思想與組成模組,學習深度遷移學習的各種方法,對比各種方法的優缺點,掌握深度遷移學習的適用範圍。
第二天
9:00-12:00
14:00-17:00 五、遷移學習前沿方法介紹 1.深度遷移網路結構設計
2.深度遷移學習目標函式設計
3.全新場景下的遷移學習
章節目標:掌握深度遷移學習的網路結構設計、目標函式設計的前沿方法,瞭解遷移學習在PDA、Source-Free DA上的應用。
六、遷移學習前沿應用 1.遷移學習在語義分割中的應用
2.遷移學習在目標檢測中的應用
3.遷移學習在行人重識別中的應用
4.圖片與影片風格遷移
章節目標:掌握深度遷移學習在語義分割、目標檢測、行人重識別等任務中的應用,學習影像/影片風格遷移方法,瞭解風格遷移在實際生活中的應用。
七、小樣本學習、Transformer等前沿方法與應用 1.小樣本學習概念與基本方法介紹
2.小樣本學習應用
3.Transformer概念與基本方法介紹
4.Transformer在影像領域的應用
章節目標:掌握小樣本學習、Transformer等前沿方法和基本思想,瞭解小樣本學習、Transformer等在實際場景下的應用。
第三天
9:00-12:00
14:00-17:00 八、實驗實操之實操環境搭建 1. 硬體準備:GPU視訊記憶體11GB以上
2. 軟體準備:Linux作業系統(Ubuntu16.04以上),顯示卡驅動安裝(512.54),CUDA Toolkit(10.1)和cuDNN加速庫(7.6.4),VS Code編輯器安裝,Jupyter Notebook
3. 程式語言和框架:Python3.8.5、torch==1..07、torchvision==0.8.2、mmcv-full==1.3.7、opencv-python==4.4.0、matplotlib==3.4.2、numpy==1.19.2、Pillow==8.3.1、scikit-learn==1.0.2
4. 資料集準備:Office-31、IRVI、GTA5、Cityscapes、Foggy cityscapes等
注:硬體準備由主辦方提供雲伺服器
九、實驗實操之深度遷移學習實踐 1.掌握PyTorch中的基本原理和程式設計思想。
2.理解在一個新的場景或資料集下,何時以及如何進行遷移學習。
3.利用PyTorch載入資料、搭建模型、訓練網路以及進行網路微調操作。
4.給定遷移場景,利用daib庫和生成對抗技術獨立完成影像分類中的領域適配。
5.遷移效果的視覺化,利用機器學習庫scikit-learn中的t-SNE對遷移過後的高維資料進行視覺化。
十、實驗實操之圖片與影片風格遷移實踐 1.掌握基於生成對抗網路的風格遷移技術。
2.影像/影片風格遷移網路的搭建,重點掌握編碼器和解碼器的內在邏輯和不同損失函式的運用。
3.實踐紅外影片轉換到可見光影片的風格遷移。
十一、實驗實操之自動駕駛中的跨域語義分割實踐 1.掌握語義分割發展現狀及代表性工作,如FCN,DeepLab系列等。
2.瞭解常用的語義分割評價指標(PA、mPA、mIoU、FWIoU)和常見資料集(PASCAL VOC2012,ADE20K、BDD100K、Cityscapes、GTA5、Dark Zurich)。
3.語義分割工具箱MMSegmentaion的認識和使用。
4.設計一個分割模型能夠從模擬環境中得到的資料遷移到真實場景下產生的資料。
學習人工智慧技術與諮詢,更多前沿高階技術值得掌握!


來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/70020013/viewspace-2909403/,如需轉載,請註明出處,否則將追究法律責任。

相關文章