- 一、機器規劃
- 二、部署安裝 node-exporter、prometheus、Grafana、kube-state-metrics
- 1、建立 monitor-sa 名稱空間
- 2、安裝node-exporter元件
- 2.1、說明
- 2.2、應用資源清單
- 2.3、透過node-exporter採集資料
- 3、k8s 叢集中部署 prometheus
- 3.1、建立一個 sa 賬號
- 3.2、將 sa 賬號 monitor 透過 clusterrolebing 繫結到 clusterrole 上
- 3.3、建立資料目錄
- 3.4、安裝prometheus
- 3.4.1、將
prometheus.yml
檔案以 ConfigMap 的形式進行管理 - 3.4.2、應用 cm 資源清單
- 3.4.3、透過 Deployment 部署 prometheus
- 3.4.4、應用 prometheus 資源清單
- 3.4.5、給 prometheus 的 pod 建立一個 svc
- 3.4.6、應用 svc 資源清單
- 3.4.1、將
- 3.5、訪問prometheus UI介面
- 3.6、檢視配置的服務發現
- 4、prometheus熱更新
- 4.1、熱載入 prometheus
- 4.2、暴力重啟 prometheus
- 5、Grafana安裝和配置
- 5.1、下載 Grafana 需要的映象
- 5.2、在 k8s 叢集各個節點匯入 Grafana 映象
- 5.3、master 節點建立 grafana.yaml
- 5.4、檢視 Grafana 的 pod 和 svc
- 5.5、檢視 Grafana UI 介面
- 5.6、給 Grafana 接入 Prometheus 資料來源
- 5.7、獲取監控模板
- 5.8、匯入監控模板
- 6、安裝配置 kube-state-metrics 元件
- 6.1、什麼是 kube-state-metrics
- 6.2、建立 sa ,並進行授權
- 6.3、建立並應用 kube-state-metrics-deploy.yaml 檔案
- 6.4、建立並應用 kube-state-metrics-svc.yaml 檔案
- 6.5、獲取 kube-state-metrics json 檔案
- 6.6、向 Grafana 匯入 kube-state-metrics json 檔案
- 三、安裝和配置 Alertmanager -- 傳送告警到 QQ 郵箱
- 1、將 alertmanager-cm.yaml 檔案以 cm 形式進行管理
- 1.1、alertmanager配置檔案說明
- 2、重新生成並應用 prometheus-cfg.yaml 檔案
- 3、重新生成 prometheus-deploy.yaml 檔案
- 3.1、建立一個名為 etcd-certs 的 Secret
- 3.2、應用 prometheus-deploy.yaml 檔案
- 4、重新生成並建立 alertmanager-svc.yaml 檔案
- 5、訪問 prometheus UI 介面
- 5.1、【error】kube-controller-manager、etcd、kube-proxy、kube-scheduler 元件 connection refused
- 5.1.1、kube-proxy
- 5.1.2、kube-controller-manager
- 5.1.3、kube-schedule
- 5.1.4、etcd
- 5.1、【error】kube-controller-manager、etcd、kube-proxy、kube-scheduler 元件 connection refused
- 6、點選Alerts,檢視
- 7、把controller-manager的cpu使用率大於90%展開
- 8、登入 alertmanager UI
- 9、登入 QQ 郵箱檢視告警資訊
- 1、將 alertmanager-cm.yaml 檔案以 cm 形式進行管理
- 四、配置 Alertmanager 報警 -- 傳送告警到釘釘
- 1、手機端拉群
- 2、建立自定義機器人
- 3、獲取釘釘的 Webhook 外掛
- 4、啟動釘釘告警外掛
- 5、對 alertmanager-cm.yaml 檔案做備份
- 6、重新生成新的 alertmanager-cm.yaml 檔案
- 7、重建資源以生效
- 8、效果
一、機器規劃
角色 | 主機名 | ip 地址 |
---|---|---|
master | k8s-master1 | 192.168.112.10 |
node | k8s-node1 | 192.168.112.20 |
node | k8s-node2 | 192.168.112.30 |
平臺 | VMware Workstation |
---|---|
作業系統 | CentOS Linux release 7.9.2009 (Core) |
記憶體、CPU | 4C4G |
磁碟大小 | 20G SCSI |
二、部署安裝 node-exporter、prometheus、Grafana、kube-state-metrics
1、建立 monitor-sa 名稱空間
master 節點操作
kubectl create ns monitor-sa
2、安裝node-exporter元件
master 節點操作
cat >> node-export.yaml <<EOF
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: node-exporter
namespace: monitor-sa
labels:
name: node-exporter
spec:
selector:
matchLabels:
name: node-exporter
template:
metadata:
labels:
name: node-exporter
spec:
hostPID: true
hostIPC: true
hostNetwork: true
containers:
- name: node-exporter
image: prom/node-exporter:v0.16.0
ports:
- containerPort: 9100
resources:
requests:
cpu: 0.15
securityContext:
privileged: true
args:
- --path.procfs
- /host/proc
- --path.sysfs
- /host/sys
- --collector.filesystem.ignored-mount-points
- '"^/(sys|proc|dev|host|etc)($|/)"'
volumeMounts:
- name: dev
mountPath: /host/dev
- name: proc
mountPath: /host/proc
- name: sys
mountPath: /host/sys
- name: rootfs
mountPath: /rootfs
tolerations:
- key: "node-role.kubernetes.io/master"
operator: "Exists"
effect: "NoSchedule"
volumes:
- name: proc
hostPath:
path: /proc
- name: dev
hostPath:
path: /dev
- name: sys
hostPath:
path: /sys
- name: rootfs
hostPath:
path: /
EOF
2.1、說明
- 主機名稱空間共享 (
hostPID
,hostIPC
,hostNetwork
)hostPID: true
: 允許 Pod 使用主機的 PID 名稱空間。Pod 可以看到主機上的所有程序hostIPC: true
: 允許 Pod 使用主機的 IPC 名稱空間。Pod 可以與其他在主機上執行的程序共享 IPC 資源(如訊號量、訊息佇列等)。hostNetwork: true
: 允許 Pod 使用主機的網路名稱空間。Pod 將使用主機的網路介面
- 命令列引數 (
args
) --path.procfs /host/proc
: 指定node-exporter
應該從/host/proc
路徑讀取程序檔案系統的資料。這使得node-exporter
可以訪問宿主機的程序資訊。--path.sysfs /host/sys
: 指定node-exporter
應該從/host/sys
路徑讀取系統檔案系統的資料。這使得node-exporter
可以訪問宿主機的系統資訊。--collector.filesystem.ignored-mount-points "^/(sys|proc|dev|host|etc)($|/)"
: 指定哪些檔案系統的掛載點應該被忽略,不被node-exporter
收集。這裡忽略了/sys
,/proc
,/dev
,/host
, 和/etc
這些掛載點,避免收集不必要的資料。- 掛載點 (
volumeMounts
和volumes
)/proc
掛載- 宿主機路徑:
/proc
- 容器內路徑:
/host/proc
- 作用: 讓
node-exporter
訪問宿主機的程序檔案系統。
- 宿主機路徑:
/dev
掛載- 宿主機路徑:
/dev
- 容器內路徑:
/host/dev
- 作用: 讓
node-exporter
訪問宿主機的裝置檔案。
- 宿主機路徑:
/sys
掛載- 宿主機路徑:
/sys
- 容器內路徑:
/host/sys
- 作用: 讓
node-exporter
訪問宿主機的系統檔案系統。
- 宿主機路徑:
/
掛載- 宿主機路徑:
/
- 容器內路徑:
/rootfs
- 作用: 讓
node-exporter
訪問宿主機的根檔案系統。
- 宿主機路徑:
- 容忍度 (
tolerations
)key: "node-role.kubernetes.io/master"
: 指定容忍的汙點鍵。operator: "Exists"
: 表示只要存在該汙點鍵,無論值是什麼,都予以容忍。effect: "NoSchedule"
: 表示即使節點上有這種汙點,也不會阻止 Pod 被排程到該節點上。
2.2、應用資源清單
kubectl apply -f node-export.yaml
kubectl get pods -n monitor-sa -l name=node-exporter
2.3、透過node-exporter採集資料
node-export預設的監聽埠是9100,可以看到當前主機獲取到的所有監控資料
# curl http://<master-ip>:9100/metrics
curl http://192.168.112.10:9100/metrics
3、k8s 叢集中部署 prometheus
3.1、建立一個 sa 賬號
kubectl create serviceaccount monitor -n monitor-sa
3.2、將 sa 賬號 monitor 透過 clusterrolebing 繫結到 clusterrole 上
kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin --serviceaccount=monitor-sa:monitor
3.3、建立資料目錄
所有 node 節點
mkdir /data && chmod 777 /data/
3.4、安裝prometheus
master 節點操作
3.4.1、將 prometheus.yml
檔案以 ConfigMap 的形式進行管理
cat >> prometheus-cfg.yaml << 'EOF'
---
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 1m
scrape_configs:
- job_name: 'kubernetes-node'
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: '/api/v1/nodes/${1}/proxy/metrics/cadvisor'
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: '$1:$2'
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
EOF
3.4.2、應用 cm 資源清單
kubectl apply -f prometheus-cfg.yaml
kubectl get cm prometheus-config -n monitor-sa -o yaml
需要確保 cm 正確解析了變數 $1、$2
不然 prometheus 獲取不到對應的 IP 地址會無法正常監控
3.4.3、透過 Deployment 部署 prometheus
cat >> prometheus-deploy.yaml << EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 2
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- prometheus
- key: component
operator: In
values:
- server
topologyKey: kubernetes.io/hostname
serviceAccountName: monitor
containers:
- name: prometheus
image: quay.io/prometheus/prometheus:latest
imagePullPolicy: IfNotPresent
command:
- prometheus
- --config.file=/etc/prometheus/prometheus.yml
- --storage.tsdb.path=/prometheus
- --storage.tsdb.retention=720h
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus/prometheus.yml
name: prometheus-config
subPath: prometheus.yml
- mountPath: /prometheus/
name: prometheus-storage-volume
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
items:
- key: prometheus.yml
path: prometheus.yml
mode: 0644
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
EOF
3.4.4、應用 prometheus 資源清單
kubectl apply -f prometheus-deploy.yaml
3.4.5、給 prometheus 的 pod 建立一個 svc
cat > prometheus-svc.yaml << EOF
---
apiVersion: v1
kind: Service
metadata:
name: prometheus
namespace: monitor-sa
labels:
app: prometheus
spec:
type: NodePort
ports:
- port: 9090
targetPort: 9090
protocol: TCP
selector:
app: prometheus
component: server
EOF
3.4.6、應用 svc 資源清單
kubectl get svc -n monitor-sa -o wide
透過上面可以看到service在宿主機上對映的埠是30172,這樣我們訪問k8s叢集的k8s-master1節點的ip:30172,就可以訪問到prometheus的web ui介面了
3.5、訪問prometheus UI介面
# <k8s-master1 IP>:32032
192.168.112.10:32032
3.6、檢視配置的服務發現
點選頁面的Status->Targets,可看到如下,說明我們配置的服務發現可以正常採集資料
4、prometheus熱更新
4.1、熱載入 prometheus
#為了每次修改配置檔案可以熱載入prometheus,也就是不停止prometheus,就可以使配置生效,如修改prometheus-cfg.yaml,想要使配置生效可用如下熱載入命令:
curl -X POST http://<prometheus-pod-ip>:9090/-/reload
kubectl get pods -n monitor-sa -l app=prometheus -o wide
4.2、暴力重啟 prometheus
熱載入速度比較慢,可以暴力重啟prometheus
如修改上面的prometheus-cfg.yaml檔案之後,可執行如下強制刪除
kubectl delete -f prometheus-cfg.yaml
kubectl delete -f prometheus-deploy.yaml
# 然後再透過apply更新
kubectl apply -f prometheus-cfg.yaml
kubectl apply -f prometheus-deploy.yaml
線上最好熱載入,暴力刪除可能造成監控資料的丟失
5、Grafana安裝和配置
5.1、下載 Grafana 需要的映象
連結:https://pan.baidu.com/s/1TmVGKxde_cEYrbjiETboEA
提取碼:052u
5.2、在 k8s 叢集各個節點匯入 Grafana 映象
docker load -i heapster-grafana-amd64_v5_0_4.tar.gz
docker images | grep grafana
5.3、master 節點建立 grafana.yaml
cat >> grafana.yaml << EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-grafana
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: grafana
template:
metadata:
labels:
task: monitoring
k8s-app: grafana
spec:
containers:
- name: grafana
image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certificates
readOnly: true
- mountPath: /var
name: grafana-storage
env:
- name: INFLUXDB_HOST
value: monitoring-influxdb
- name: GF_SERVER_HTTP_PORT
value: "3000"
# The following env variables are required to make Grafana accessible via
# the kubernetes api-server proxy. On production clusters, we recommend
# removing these env variables, setup auth for grafana, and expose the grafana
# service using a LoadBalancer or a public IP.
- name: GF_AUTH_BASIC_ENABLED
value: "false"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ORG_ROLE
value: Admin
- name: GF_SERVER_ROOT_URL
# If you're only using the API Server proxy, set this value instead:
# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
value: /
volumes:
- name: ca-certificates
hostPath:
path: /etc/ssl/certs
- name: grafana-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: 'true'
kubernetes.io/name: monitoring-grafana
name: monitoring-grafana
namespace: kube-system
spec:
# In a production setup, we recommend accessing Grafana through an external Loadbalancer
# or through a public IP.
# type: LoadBalancer
# You could also use NodePort to expose the service at a randomly-generated port
# type: NodePort
ports:
- port: 80
targetPort: 3000
selector:
k8s-app: grafana
type: NodePort
EOF
5.4、檢視 Grafana 的 pod 和 svc
5.5、檢視 Grafana UI 介面
# <master-ip>:<grafana-svc-port>
192.168.112.10:31455
5.6、給 Grafana 接入 Prometheus 資料來源
選擇 Create your first data source |
---|
Name: Prometheus |Type: Prometheus|HTTP 處的URL寫 如下:http://prometheus.monitor-sa.svc:9090 |
點選左下角 Save & Test,出現如下 Data source is working,說明 prometheus 資料來源成功的被 grafana 接入了 |
5.7、獲取監控模板
- 可以在 Grafana Dashboard 官網搜尋需要的
Grafana dashboards | Grafana Labs
- 也可以直接克隆 Github 倉庫,獲取 node_exporter.json 、 docker_rev1.json 監控模板
git clone git@github.com:misakivv/Grafana-Dashboard.git
5.8、匯入監控模板
依次點選左側欄的 + 號下方的 Import |
---|
選擇 Upload json file,選擇一個本地的node_exporter.json 檔案 |
匯入後 Options 選項中會出現 Name 是自動生成的,Prometheus 是需要我們選擇 Prometheus的 |
點選 Import 即可出現如下介面 |
按照如上操作,匯入docker_rev1.json監控模板 |
6、安裝配置 kube-state-metrics 元件
6.1、什麼是 kube-state-metrics
kube-state-metrics透過監聽API Server生成有關資源物件的狀態指標,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是簡單的提供一個metrics資料,並不會儲存這些指標資料,所以我們可以使用Prometheus來抓取這些資料然後儲存,主要關注的是業務相關的一些後設資料,比如Deployment、Pod、副本狀態等;排程了多少個replicas?現在可用的有幾個?多少個Pod是running/stopped/terminated狀態?Pod重啟了多少次?有多少job在執行中。
6.2、建立 sa ,並進行授權
k8s-master1 節點編寫一個 kube-state-metrics-rbac.yaml 檔案
cat >> kube-state-metrics-rbac.yaml << EOF
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: kube-state-metrics
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kube-state-metrics
rules:
- apiGroups: [""]
resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
verbs: ["list", "watch"]
- apiGroups: ["extensions"]
resources: ["daemonsets", "deployments", "replicasets"]
verbs: ["list", "watch"]
- apiGroups: ["apps"]
resources: ["statefulsets"]
verbs: ["list", "watch"]
- apiGroups: ["batch"]
resources: ["cronjobs", "jobs"]
verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
resources: ["horizontalpodautoscalers"]
verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kube-state-metrics
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
EOF
kubectl get sa,clusterrole,clusterrolebinding -n kube-system | grep kube-state-metrics
6.3、建立並應用 kube-state-metrics-deploy.yaml 檔案
k8s-master1 節點操作
cat > kube-state-metrics-deploy.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: kube-state-metrics
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
app: kube-state-metrics
template:
metadata:
labels:
app: kube-state-metrics
spec:
serviceAccountName: kube-state-metrics
containers:
- name: kube-state-metrics
# image: gcr.io/google_containers/kube-state-metrics-amd64:v1.3.1
image: quay.io/coreos/kube-state-metrics:latest
ports:
- containerPort: 8080
EOF
kubectl apply -f kube-state-metrics-deploy.yaml
kubectl get pods -n kube-system -l app=kube-state-metrics -w
拉取 kube-state-metrics 指定映象版本失敗時可以選擇在叢集各個節點上
docker pull quay.io/coreos/kube-state-metrics:latest
拉取最新 tag 版本
6.4、建立並應用 kube-state-metrics-svc.yaml 檔案
k8s-master1 節點操作
cat >> kube-state-metrics-svc.yaml <<EOF
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
name: kube-state-metrics
namespace: kube-system
labels:
app: kube-state-metrics
spec:
ports:
- name: kube-state-metrics
port: 8080
protocol: TCP
selector:
app: kube-state-metrics
EOF
kubectl apply -f kube-state-metrics-svc.yaml
kubectl get svc -n kube-system -l app=kube-state-metrics
6.5、獲取 kube-state-metrics json 檔案
git clone git@github.com:misakivv/Grafana-Dashboard.git
6.6、向 Grafana 匯入 kube-state-metrics json 檔案
點選左側欄 + 號的 Import |
---|
點選 Upload .json File,上傳 Kubernetes Cluster (Prometheus)-1577674936972.json |
檢視 |
**同樣的匯入 Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json ** |
三、安裝和配置 Alertmanager -- 傳送告警到 QQ 郵箱
1、將 alertmanager-cm.yaml 檔案以 cm 形式進行管理
k8s-master1 節點操作
cat >> alertmanager-cm.yaml << EOF
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |-
global:
resolve_timeout: 1m
smtp_smarthost: 'smtp.qq.com:465'
smtp_from: '2830909671@qq.com'
smtp_auth_username: '2830909671@qq.com'
smtp_auth_password: 'ajjgpgwwfkpcdgih'
smtp_require_tls: false
route:
group_by: [alertname]
group_wait: 5s
group_interval: 5s
repeat_interval: 5m
receiver: default-receiver
receivers:
- name: 'default-receiver'
email_configs:
- to: 'misakikk@qq.com'
send_resolved: true
EOF
kubectl apply -f alertmanager-cm.yaml
kubectl get cm alertmanager -n monitor-sa
1.1、alertmanager配置檔案說明
smtp_smarthost: 'smtp.qq.com:465'
#用於傳送郵件的郵箱的SMTP伺服器地址+埠。QQ 郵箱 SMTP 服務地址,官方地址為 smtp.qq.com 埠為 465 或 587,同時要設定開啟 POP3/SMTP 服務。
smtp_from: '2830909671@qq.com'
#這是指定從哪個郵箱傳送報警
smtp_auth_password: 'ajjgpgwwfkpcdgih'
#這是傳送郵箱的授權碼而不是登入密碼
email_configs:
- to: 'misakikk@qq.com'
#to後面指定傳送到哪個郵箱
2、重新生成並應用 prometheus-cfg.yaml 檔案
k8s-master1 節點操作
cat > prometheus-cfg.yaml << 'EOF'
kind: ConfigMap
apiVersion: v1
metadata:
labels:
app: prometheus
name: prometheus-config
namespace: monitor-sa
data:
prometheus.yml: |
rule_files:
- /etc/prometheus/rules.yml
alerting:
alertmanagers:
- static_configs:
- targets: ["localhost:9093"]
global:
scrape_interval: 15s
scrape_timeout: 10s
evaluation_interval: 1m
scrape_configs:
- job_name: 'kubernetes-node'
kubernetes_sd_configs:
- role: node
relabel_configs:
- source_labels: [__address__]
regex: '(.*):10250'
replacement: '${1}:9100'
target_label: __address__
action: replace
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- job_name: 'kubernetes-node-cadvisor'
kubernetes_sd_configs:
- role: node
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: '/api/v1/nodes/${1}/proxy/metrics/cadvisor'
- job_name: 'kubernetes-apiserver'
kubernetes_sd_configs:
- role: endpoints
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: '$1:$2'
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_scrape
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: '$1:$2'
source_labels:
- __address__
- __meta_kubernetes_pod_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_pod_name
target_label: kubernetes_pod_name
- job_name: 'kubernetes-schedule'
scrape_interval: 5s
static_configs:
- targets: ['192.168.112.10:10259']
- job_name: 'kubernetes-controller-manager'
scrape_interval: 5s
static_configs:
- targets: ['192.168.112.10:10257']
- job_name: 'kubernetes-kube-proxy'
scrape_interval: 5s
static_configs:
- targets: ['192.168.112.10:10249','192.168.112.20:10249','192.168.112.30:10249']
- job_name: 'kubernetes-etcd'
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
scrape_interval: 5s
static_configs:
- targets: ['192.168.112.10:2381']
rules.yml: |
groups:
- name: example
rules:
- alert: kube-proxy的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過80%"
- alert: kube-proxy的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過90%"
- alert: scheduler的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過80%"
- alert: scheduler的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過90%"
- alert: controller-manager的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過80%"
- alert: controller-manager的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過90%"
- alert: apiserver的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過80%"
- alert: apiserver的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過90%"
- alert: etcd的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過80%"
- alert: etcd的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}元件的cpu使用率超過90%"
- alert: kube-state-metrics的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}元件的cpu使用率超過80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: kube-state-metrics的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}元件的cpu使用率超過90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: coredns的cpu使用率大於80%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}元件的cpu使用率超過80%"
value: "{{ $value }}%"
threshold: "80%"
- alert: coredns的cpu使用率大於90%
expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.k8s_app}}元件的cpu使用率超過90%"
value: "{{ $value }}%"
threshold: "90%"
- alert: kube-proxy開啟控制代碼數>600
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>600"
value: "{{ $value }}"
- alert: kube-proxy開啟控制代碼數>1000
expr: process_open_fds{job=~"kubernetes-kube-proxy"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>1000"
value: "{{ $value }}"
- alert: kubernetes-schedule開啟控制代碼數>600
expr: process_open_fds{job=~"kubernetes-schedule"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>600"
value: "{{ $value }}"
- alert: kubernetes-schedule開啟控制代碼數>1000
expr: process_open_fds{job=~"kubernetes-schedule"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>1000"
value: "{{ $value }}"
- alert: kubernetes-controller-manager開啟控制代碼數>600
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>600"
value: "{{ $value }}"
- alert: kubernetes-controller-manager開啟控制代碼數>1000
expr: process_open_fds{job=~"kubernetes-controller-manager"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>1000"
value: "{{ $value }}"
- alert: kubernetes-apiserver開啟控制代碼數>600
expr: process_open_fds{job=~"kubernetes-apiserver"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>600"
value: "{{ $value }}"
- alert: kubernetes-apiserver開啟控制代碼數>1000
expr: process_open_fds{job=~"kubernetes-apiserver"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>1000"
value: "{{ $value }}"
- alert: kubernetes-etcd開啟控制代碼數>600
expr: process_open_fds{job=~"kubernetes-etcd"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>600"
value: "{{ $value }}"
- alert: kubernetes-etcd開啟控制代碼數>1000
expr: process_open_fds{job=~"kubernetes-etcd"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "{{$labels.instance}}的{{$labels.job}}開啟控制代碼數>1000"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 600
for: 2s
labels:
severity: warnning
annotations:
description: "外掛{{$labels.k8s_app}}({{$labels.instance}}): 開啟控制代碼數超過600"
value: "{{ $value }}"
- alert: coredns
expr: process_open_fds{k8s_app=~"kube-dns"} > 1000
for: 2s
labels:
severity: critical
annotations:
description: "外掛{{$labels.k8s_app}}({{$labels.instance}}): 開啟控制代碼數超過1000"
value: "{{ $value }}"
- alert: kube-proxy
expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 使用虛擬記憶體超過2G"
value: "{{ $value }}"
- alert: scheduler
expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 使用虛擬記憶體超過2G"
value: "{{ $value }}"
- alert: kubernetes-controller-manager
expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 使用虛擬記憶體超過2G"
value: "{{ $value }}"
- alert: kubernetes-apiserver
expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 使用虛擬記憶體超過2G"
value: "{{ $value }}"
- alert: kubernetes-etcd
expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 使用虛擬記憶體超過2G"
value: "{{ $value }}"
- alert: kube-dns
expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"} > 2000000000
for: 2s
labels:
severity: warnning
annotations:
description: "外掛{{$labels.k8s_app}}({{$labels.instance}}): 使用虛擬記憶體超過2G"
value: "{{ $value }}"
- alert: HttpRequestsAvg
expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m])) > 1000
for: 2s
labels:
team: admin
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): TPS超過1000"
value: "{{ $value }}"
threshold: "1000"
- alert: Pod_restarts
expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
for: 2s
labels:
severity: warnning
annotations:
description: "在{{$labels.namespace}}名稱空間下發現{{$labels.pod}}這個pod下的容器{{$labels.container}}被重啟,這個監控指標是由{{$labels.instance}}採集的"
value: "{{ $value }}"
threshold: "0"
- alert: Pod_waiting
expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.pod}}下的{{$labels.container}}啟動異常等待中"
value: "{{ $value }}"
threshold: "1"
- alert: Pod_terminated
expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.pod}}下的{{$labels.container}}被刪除"
value: "{{ $value }}"
threshold: "1"
- alert: Etcd_leader
expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
for: 2s
labels:
team: admin
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 當前沒有leader"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_leader_changes
expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 當前leader已發生改變"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_failed
expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
for: 2s
labels:
team: admin
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}): 服務失敗"
value: "{{ $value }}"
threshold: "0"
- alert: Etcd_db_total_size
expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
for: 2s
labels:
team: admin
annotations:
description: "元件{{$labels.job}}({{$labels.instance}}):db空間超過10G"
value: "{{ $value }}"
threshold: "10G"
- alert: Endpoint_ready
expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
for: 2s
labels:
team: admin
annotations:
description: "空間{{$labels.namespace}}({{$labels.instance}}): 發現{{$labels.endpoint}}不可用"
value: "{{ $value }}"
threshold: "1"
- name: 物理節點狀態-監控告警
rules:
- alert: 物理節點cpu使用率
expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
for: 2s
labels:
severity: ccritical
annotations:
summary: "{{ $labels.instance }}cpu使用率過高"
description: "{{ $labels.instance }}的cpu使用率超過90%,當前使用率[{{ $value }}],需要排查處理"
- alert: 物理節點記憶體使用率
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}記憶體使用率過高"
description: "{{ $labels.instance }}的記憶體使用率超過90%,當前使用率[{{ $value }}],需要排查處理"
- alert: InstanceDown
expr: up == 0
for: 2s
labels:
severity: critical
annotations:
summary: "{{ $labels.instance }}: 伺服器當機"
description: "{{ $labels.instance }}: 伺服器延時超過2分鐘"
- alert: 物理節點磁碟的IO效能
expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入磁碟IO使用率過高!"
description: "{{$labels.mountpoint }} 流入磁碟IO大於60%(目前使用:{{$value}})"
- alert: 入網流量頻寬
expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流入網路頻寬過高!"
description: "{{$labels.mountpoint }}流入網路頻寬持續5分鐘高於100M. RX頻寬使用率{{$value}}"
- alert: 出網流量頻寬
expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 流出網路頻寬過高!"
description: "{{$labels.mountpoint }}流出網路頻寬持續5分鐘高於100M. RX頻寬使用率{{$value}}"
- alert: TCP會話
expr: node_netstat_Tcp_CurrEstab > 1000
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} TCP_ESTABLISHED過高!"
description: "{{$labels.mountpoint }} TCP_ESTABLISHED大於1000%(目前使用:{{$value}}%)"
- alert: 磁碟容量
expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
for: 2s
labels:
severity: critical
annotations:
summary: "{{$labels.mountpoint}} 磁碟分割槽使用率過高!"
description: "{{$labels.mountpoint }} 磁碟分割槽使用大於80%(目前使用:{{$value}}%)"
EOF
注意:
除了
kube-proxy
預設在每個節點的10249
埠上暴露其指標其餘的
kubernetes-schedule
、kubernetes-controller-manager
、kubernetes-etcd
這些元件Pod 的容器需要根據自己的 k8s 叢集情況進行修改
kubectl apply -f prometheus-cfg.yaml
kubectl get cm prometheus-config -n monitor-sa -o yaml
同樣的還是需要檢查 cm 檔案中是否正確解析了 $1 $2
3、重新生成 prometheus-deploy.yaml 檔案
k8s-master1 節點操作
cat > prometheus-deploy.yaml << EOF
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus-server
namespace: monitor-sa
labels:
app: prometheus
spec:
replicas: 2
selector:
matchLabels:
app: prometheus
component: server
#matchExpressions:
#- {key: app, operator: In, values: [prometheus]}
#- {key: component, operator: In, values: [server]}
template:
metadata:
labels:
app: prometheus
component: server
annotations:
prometheus.io/scrape: 'false'
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- prometheus
- key: component
operator: In
values:
- server
topologyKey: kubernetes.io/hostname
serviceAccountName: monitor
containers:
- name: prometheus
image: quay.io/prometheus/prometheus:latest
imagePullPolicy: IfNotPresent
command:
- "/bin/prometheus"
args:
- "--config.file=/etc/prometheus/prometheus.yml"
- "--storage.tsdb.path=/prometheus"
- "--storage.tsdb.retention=24h"
- "--web.enable-lifecycle"
ports:
- containerPort: 9090
protocol: TCP
volumeMounts:
- mountPath: /etc/prometheus
name: prometheus-config
- mountPath: /prometheus/
name: prometheus-storage-volume
- name: k8s-certs
mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
- name: alertmanager
image: prom/alertmanager:latest
imagePullPolicy: IfNotPresent
args:
- "--config.file=/etc/alertmanager/alertmanager.yml"
- "--log.level=debug"
ports:
- containerPort: 9093
protocol: TCP
name: alertmanager
volumeMounts:
- name: alertmanager-config
mountPath: /etc/alertmanager
- name: alertmanager-storage
mountPath: /alertmanager
- name: localtime
mountPath: /etc/localtime
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
- name: prometheus-storage-volume
hostPath:
path: /data
type: Directory
- name: k8s-certs
secret:
secretName: etcd-certs
- name: alertmanager-config
configMap:
name: alertmanager
- name: alertmanager-storage
hostPath:
path: /data/alertmanager
type: DirectoryOrCreate
- name: localtime
hostPath:
path: /usr/share/zoneinfo/Asia/Shanghai
EOF
3.1、建立一個名為 etcd-certs 的 Secret
kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
3.2、應用 prometheus-deploy.yaml 檔案
kubectl apply -f prometheus-deploy.yaml
kubectl get pods -n monitor-sa
4、重新生成並建立 alertmanager-svc.yaml 檔案
cat >alertmanager-svc.yaml <<EOF
---
apiVersion: v1
kind: Service
metadata:
labels:
name: prometheus
kubernetes.io/cluster-service: 'true'
name: alertmanager
namespace: monitor-sa
spec:
ports:
- name: alertmanager
nodePort: 30066
port: 9093
protocol: TCP
targetPort: 9093
selector:
app: prometheus
sessionAffinity: None
type: NodePort
EOF
kubectl apply -f alertmanager-svc.yaml
kubectl get svc alertmanager -n monitor-sa
5、訪問 prometheus UI 介面
5.1、【error】kube-controller-manager、etcd、kube-proxy、kube-scheduler 元件 connection refused
5.1.1、kube-proxy
預設情況下,該服務監聽埠只提供給127.0.0.1,需修改為0.0.0.0
kubectl edit cm/kube-proxy -n kube-system
- 編輯檔案,將檔案修改允許0.0.0.0即可,儲存
metricsBindAddress: 0.0.0.0:10249
- 刪除重建 kube-proxy 的 pod
kubectl delete pod -l k8s-app=kube-proxy -n kube-system
- 效果
5.1.2、kube-controller-manager
事先說明:到這一步我試過網上很多方法都沒有成功獲取到資料,所以我重新建立了 sa 慎用,僅供參考
- 修改 kube-controller-manager 的 yaml 檔案
預設監聽本地修改為 0.0.0.0
- --bind-address=127.0.0.1
# 修改為
- --bind-address=0.0.0.0
- 建立ServiceAccount
建立一個新的ServiceAccount,用於Prometheus訪問 kube-controller-manager
。
cat > prom-sa << EOF
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus-sa
namespace: monitor-sa
EOF
- 建立ClusterRole
建立一個ClusterRole,定義Prometheus所需的許可權。
cat > porm-role << EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus-role
rules:
- nonResourceURLs:
- "/metrics"
verbs:
- get
EOF
- 建立ClusterRoleBinding
將ServiceAccount繫結到ClusterRole。
cat > prom-bind.yaml << EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: prometheus-binding
subjects:
- kind: ServiceAccount
name: prometheus-sa
namespace: monitor-sa
roleRef:
kind: ClusterRole
name: prometheus-role
apiGroup: rbac.authorization.k8s.io
EOF
- 獲取ServiceAccount的Token
獲取ServiceAccount的Token,以便在Prometheus配置中使用。
TOKEN=$(kubectl get secret $(kubectl get sa prometheus-sa -n monitor-sa -o json | jq -r '.secrets[].name') -n monitor-sa -o json | jq -r '.data.token' | base64 --decode)
- 修改Prometheus配置檔案(cm)
- job_name: 'kubernetes-controller-manager'
scheme: https
tls_config:
insecure_skip_verify: true # 禁用證書驗證
authorization:
credentials: eyJhbGciOiJSUzI1NiIsImtpZCI6IkFEWVNqaWlueWVDMzBUcTZvQk9MRkpxQ0diLWRGWkNoaWlpZkgwR21NcEkifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6InByb21ldGhldXMtc2EtdG9rZW4tbnQ5bm4iLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoicHJvbWV0aGV1cy1zYSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjQ4YTA5NDExLTAwMmYtNDE0Ni05YzY4LTBiNmVjOWYzYWZlZCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOnByb21ldGhldXMtc2EifQ.DNgCjTVxsrGDltvQZG-x7qPQrh369SO_e0faGrrhjgkBLS4q2sh85wkaBNNZcIjxZcVk7ZU9gQmQkM3AIgGIcIURpQGDMgVVI_xF1JV8iQWe-nL1yHnQAXDjyMAd1826wVvMH8LSKqdKfPVaMHN8t0LScX5yHonSJUqoevxi7Mm7tiUd33IlMQ6xH6M8Tu8bsg-fOVmL6nnGpC1tPgaZy8M_GA_Kh9j8SwHXi4Yd9r75eOSa3J6N4KF6n-EPKxnGmXDooA60G94YptsDFCQMi1t4TLAFR1FKraycWHwPbIwviUZTvA1WXbkiHnh0R6q-y0hHJVbAi_ZXagVXKZFBaw # 替換為實際的Token值
scrape_interval: 5s
static_configs:
- targets: ['192.168.112.10:10257']
- 重啟Prometheus
更新配置後,重啟Prometheus以應用新的配置。
kubectl rollout restart deployment/prometheus-server -n monitor-sa
- 效果
5.1.3、kube-schedule
和 kube-controller-manager 操作一致
- 效果
5.1.4、etcd
- 修改建立 etcd 的 yaml 檔案
新增 master 節點 ip + etcd port
vim /etc/kubernetes/manifests/etcd.yaml
- --listen-metrics-urls=http://127.0.0.1:2381,http://192.168.112.10:2381
- 修改 prometheus.yaml 檔案
改為 http
- 效果
6、點選Alerts,檢視
7、把controller-manager的cpu使用率大於90%展開
FIRING表示prometheus已經將告警發給alertmanager
在Alertmanager 中可以看到有 alert。
8、登入 alertmanager UI
<master-ip>:svc-alertmanager-port
192.168.112.10:30066
9、登入 QQ 郵箱檢視告警資訊
四、配置 Alertmanager 報警 -- 傳送告警到釘釘
1、手機端拉群
因為 PC 端不好操作
2、建立自定義機器人
自定義機器人安全設定 - 釘釘開放平臺 (dingtalk.com)
群設定 |
---|
機器人 |
新增機器人 |
自定義 |
新增 |
機器人名字、安全設定 |
保管好 Webhook |
3、獲取釘釘的 Webhook 外掛
master 節點操作
git clone git@github.com:misakivv/prometheus-webhook-dingtalk.git
cd prometheus-webhook-dingtalk
tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz
cd prometheus-webhook-dingtalk-0.3.0.linux-amd64
4、啟動釘釘告警外掛
nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=feb3df2c6a987c8c1466c16eb90f4c2d3817c481aacf15cecc46f588f2716f25" &
5、對 alertmanager-cm.yaml 檔案做備份
cp alertmanager-cm.yaml alertmanager-cm.yaml.bak
6、重新生成新的 alertmanager-cm.yaml 檔案
cat >alertmanager-cm.yaml <<EOF
kind: ConfigMap
apiVersion: v1
metadata:
name: alertmanager
namespace: monitor-sa
data:
alertmanager.yml: |-
global:
resolve_timeout: 1m
smtp_smarthost: 'smtp.qq.com:465'
smtp_from: '2830909671@qq.com'
smtp_auth_username: '2830909671@qq.com'
smtp_auth_password: 'ajjgpgwwfkpcdgih'
smtp_require_tls: false
route:
group_by: [alertname]
group_wait: 10s
group_interval: 10s
repeat_interval: 10m
receiver: cluster1
receivers:
- name: cluster1
webhook_configs:
- url: 'http://192.168.112.10:8060/dingtalk/cluster1/send'
send_resolved: true
EOF
7、重建資源以生效
kubectl delete cm alertmanager -n monitor-sa
kubectl apply -f alertmanager-cm.yaml
kubectl delete -f prometheus-cfg.yaml
kubectl apply -f prometheus-cfg.yaml
kubectl delete -f prometheus-deploy.yaml
kubectl apply -f prometheus-deploy.yaml
8、效果
暫時先這樣,其實 alertmanager 還有靜默、去重、抑制等功能,下一篇再共同學習