基於pytorch的目標檢測資料增強(tensor資料流版本)
隨機縮放
class randomScale(object):
def __call__(self,image,target):
# 固定住高度,以 0.8-1.2 伸縮寬度,做影像形變
if random.random() < 0.3:
image = np.array(image)
image = np.transpose(image, (1, 2, 0))
boxes = target["boxes"]
scale = random.uniform(0.8,1.2)
height,width,c = image.shape
image = cv2.resize(image,(int(width*scale),height))
scale_tensor = torch.FloatTensor([[scale,1,scale,1]]).expand_as(boxes)
boxes = boxes * scale_tensor
image = np.transpose(image, (2, 0, 1))
image = torch.from_numpy(image)
target["boxes"] = boxes
return image,target
隨機模糊
class randomBlur(object):
def __call__(self, image, target):
if random.random() < 0.3:
image = np.array(image)
image = np.transpose(image, (1, 2, 0))
image = cv2.blur(image, (5, 5))
image = np.transpose(image, (2, 0, 1))
image = torch.from_numpy(image)
return image, target
隨機擦除(遮擋)
可以增加魯棒性,提供兩個經典演算法,cutout
和
randomerase
class Cutout(object):
"""Randomly mask out one or more patches from an image.
Args:
n_holes (int): Number of patches to cut out of each image.
length (int): The length (in pixels) of each square patch.
"""
def __init__(self, n_holes=6, length=50):
self.n_holes = n_holes
self.length = length
def __call__(self, image, target):
"""
Args:
img (Tensor): Tensor image of size (C, H, W).
Returns:
Tensor: Image with n_holes of dimension length x length cut out of it.
"""
if random.random() < 0.3:
img = image
h = img.shape[1]
w = img.shape[2]
mask = np.ones((h, w), np.float32)
for n in range(self.n_holes):
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img = img * mask
image = img
return image, targetclass RandomErasing(object):
'''
Class that performs Random Erasing in Random Erasing Data Augmentation by Zhong et al.
probability: The probability that the operation will be performed.
sl: min erasing area
sh: max erasing area
r1: min aspect ratio
mean: erasing value
'''
def __init__(self, sl=0.01, sh=0.25, r1=0.3, mean=[0.4914, 0.4822, 0.4465]):
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, image, target):
if random.random() < 0.3:
image = np.array(image)
boxes = target["boxes"].numpy()
area_box = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
for attempt in range(100):
area = image.shape[1] * image.shape[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
if target_area > area_box.all() * 3:
break
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < image.shape[2] and h < image.shape[1]:
x1 = random.randint(0, 跟單網https://www.gendan5.com/image.shape[1] - h)
y1 = random.randint(0, image.shape[2] - w)
if image.shape[0] == 3:
image[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
image[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
image[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
else:
image[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
image = torch.from_numpy(image)
return image, target
隨機裁剪
class Random_crop(object):
def __call__(self, image, target):
if random.random() < 0.3:
boxes = target["boxes"]
labels = target["labels"]
image = np.array(image)
image = np.transpose(image, (1, 2, 0))
center = (boxes[:, 2:] + boxes[:, :2]) / 2
height, width, c = image.shape
h = random.uniform(0.6 * height, height)
w = random.uniform(0.6 * width, width)
x = random.uniform(0, width - w)
y = random.uniform(0, height - h)
x, y, h, w = int(x), int(y), int(h), int(w)
center = center - torch.FloatTensor([[x, y]]).expand_as(center)
mask1 = (center[:, 0] > 0) & (center[:, 0] < w)
mask2 = (center[:, 1] > 0) & (center[:, 1] < h)
mask = (mask1 & mask2).view(-1, 1)
boxes_in = boxes[mask.expand_as(boxes)].view(-1, 4)
# if (len(boxes_in) == 0):
# return image, boxes, labels
box_shift = torch.FloatTensor([[x, y, x, y]]).expand_as(boxes_in)
boxes_in = boxes_in - box_shift
boxes_in[:, 0] = boxes_in[:, 0].clamp_(min=0, max=w)
boxes_in[:, 2] = boxes_in[:, 2].clamp_(min=0, max=w)
boxes_in[:, 1] = boxes_in[:, 1].clamp_(min=0, max=h)
boxes_in[:, 3] = boxes_in[:, 3].clamp_(min=0, max=h)
labels_in = labels[mask.view(-1)]
img_croped = image[y:y + h, x:x + w, :]
image = np.transpose(img_croped, (2, 0, 1))
image = torch.from_numpy(image)
target["labels"] = labels_in
target["boxes"] = boxes_in
return image, target
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69946337/viewspace-2755843/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- Pytorch基礎-tensor資料結構PyTorch資料結構
- 目標檢測資料集分析
- SAR目標檢測資料集彙總
- 目標檢測資料集,全部有標註
- 目標檢測(4):LeNet-5 的 PyTorch 復現(自定義資料集篇)!PyTorch
- 基於工業資料的檢測分析
- 目標檢測(3):LeNet-5 的 PyTorch 復現(CIFAR10 資料集篇)!PyTorch
- python將目標檢測資料匯入到指定資料庫中Python資料庫
- 目標檢測兩種常用的資料集COCO和VOC
- Pytorch 目標檢測學習 Day 2PyTorch
- 資料 + 程式碼,基於 Keras 的煙火檢測Keras
- Facebook 釋出 Detectron2:基於 PyTorch 的新一代目標檢測工具PyTorch
- transforms模組—PyTorch影像處理與資料增強方法ORMPyTorch
- 資料庫基於版本的閃回資料庫
- 檢視資料庫的版本資料庫
- 資料分析 | 基於智慧標籤,精準管理資料
- 一個基於PyTorch的目標檢測工具箱,商湯聯合港中文開源mmdetectionPyTorch
- 【轉載備份】目標檢測兩種常用的資料集COCO和VOC
- TF專案實戰(基於SSD目標檢測)——人臉檢測1
- 0-目標檢測模型的基礎模型
- 目標檢測
- 什麼是資料增強?
- 基於OpenCV和YOLOv3深度學習的目標檢測OpenCVYOLO深度學習
- 基於混合高斯模型的運動目標檢測演算法模型演算法
- netty系列之:基於流的資料傳輸Netty
- 使用C#處理基於位元流的資料C#
- [python] 基於PyOD庫實現資料異常檢測Python
- 目標檢測(2):我用 PyTorch 復現了 LeNet-5 神經網路(MNIST 手寫資料集篇)!PyTorch神經網路
- 計算機視覺筆記及資料整理(含影象分割、目標檢測)計算機視覺筆記
- 資料治理的目標和原則
- SQL Server資料檔案增長檢測(三)RFSQLServer
- SQL Server資料檔案增長檢測(一)FMSQLServer
- 基於RMAN 建立測試資料庫資料庫
- 九、目標檢測
- 論文精讀:用於少樣本目標檢測的元調整損失函式和資料增強(Meta-tuning Loss Functions and Data Augmentation for Few-shot Object Detection)函式FunctionObject
- 由序列檢測啟發:資料流滑動視窗操作
- 深度學習領域的資料增強深度學習
- 基於 kafka 的日誌資料建模測試Kafka