題外話
"行百里者半九十",是說步行一百里路,走過九十里,只能算是走了一半。因為步行越接近目的地,走起來越困難。借指凡事到了接近成功,往往是最吃力、最艱難的時段。勸人做事貴在堅持,有始容易,有終實難。
不多說了,希望自己能堅持寫完這個系列 ......
1 前言
在前幾篇文章中,你應該已經看到文中有冒出來比較多的陌生的類,比如 Surface/SurfaceControl/ANativeWindow/ANativeWindowBuffer,這些類有什麼作用?它們之間有什麼關係?以及它們和BufferQueue之間的關係是怎樣的?我們帶著這些問題,來開始這篇文章的講解
♦ ANativeWindow
♦ Surface
♦ SurfaceControl
♦ ANativeWindowBuffer
2 幾個常用類介紹
ANativeWindow
ANativeWindow 顧名思義,這個結構體是對一個本地視窗的抽象描述。老規矩先看程式碼:
其定義位於:/frameworks/native/libs/nativewindow/include/system/window.h
struct ANativeWindow
{
// C++ 程式碼下會定義建構函式,並初始化common成員中的部分資訊
#ifdef __cplusplus
ANativeWindow()
: flags(0), minSwapInterval(0), maxSwapInterval(0), xdpi(0), ydpi(0)
{
common.magic = ANDROID_NATIVE_WINDOW_MAGIC;
common.version = sizeof(ANativeWindow);
memset(common.reserved, 0, sizeof(common.reserved));
}
/* Implement the methods that sp<ANativeWindow> expects so that it
can be used to automatically refcount ANativeWindow's. */
void incStrong(const void* /*id*/) const {
common.incRef(const_cast<android_native_base_t*>(&common));
}
void decStrong(const void* /*id*/) const {
common.decRef(const_cast<android_native_base_t*>(&common));
}
#endif
// 結構體第一個成員,相當於繼承自android_native_base_t,其主要用於引用計數,還有版本資訊
struct android_native_base_t common;
/* flags describing some attributes of this surface or its updater */
const uint32_t flags;
/* min swap interval supported by this updated */
const int minSwapInterval;
/* max swap interval supported by this updated */
const int maxSwapInterval;
/* horizontal and vertical resolution in DPI */
const float xdpi;
const float ydpi;
/* Some storage reserved for the OEM's driver. */
intptr_t oem[4];
/* 設定swap間隔,跟蹤原始碼可發現其最終呼叫了mGraphicBufferProducer->setAsyncMode,
也就是設定Producer是同步or非同步模式 */
int (*setSwapInterval)(struct ANativeWindow* window,
int interval);
/* 請求(出佇列)一塊buffer。執行後這塊buffer就不是locked鎖定狀態,因此內容不能被修改。
如果沒有可用的buffer,這個方法會被阻塞。
該方法已被棄用。*/
int (*dequeueBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer** buffer);
/* 鎖住buffer。在修改buffer中的內容前一定要先呼叫lock方法。
這塊buffer首先是dequeueBuffer請求到的。
該方法已被棄用。*/
*/
int (*lockBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer);
/* 當修改完buffer內容,呼叫這個方法,把buffer返回到佇列中,用於後續顯示輸出。
該方法已被棄用。*/
int (*queueBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer);
/* 檢索查詢有關 native window 的資訊
what指明要查詢資訊的型別,比如 NATIVE_WINDOW_WIDTH 、NATIVE_WINDOW_HEIGHT 查詢寬高*/
int (*query)(const struct ANativeWindow* window,
int what, int* value);
/* 對surface執行各種操作,比如 NATIVE_WINDOW_SET_USAGE or NATIVE_WINDOW_CONNECT
一般不會直接呼叫這個方法,而是使用輔助方法,比如 native_window_set_usage */
int (*perform)(struct ANativeWindow* window,
int operation, ... );
/* 取消已出佇列的buffer。這個方法已被棄用 */
int (*cancelBuffer_DEPRECATED)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer);
/* 請求(出佇列)一塊buffer。如果沒有可用的buffer,這個方法會被阻塞。
fenceFd是一個fence檔案描述符,可以簡單理解為一個資源同步鎖
當發出fence訊號後才可以寫buffer */
int (*dequeueBuffer)(struct ANativeWindow* window,
struct ANativeWindowBuffer** buffer, int* fenceFd);
/* 入佇列一塊buffer */
int (*queueBuffer)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer, int fenceFd);
/* 取消一塊已經dequeue的buffer */
int (*cancelBuffer)(struct ANativeWindow* window,
struct ANativeWindowBuffer* buffer, int fenceFd);
};
在/frameworks/native/libs/nativewindow/include/system/window.h這個標頭檔案中,還定義很多enum常量,這些常量的作用這原始碼中都有詳細的英文註釋,建議直接閱讀理解。
用於query()函式檢索資訊的常量
/* attributes queriable with query() */
enum {
NATIVE_WINDOW_WIDTH = 0,
NATIVE_WINDOW_HEIGHT = 1,
NATIVE_WINDOW_FORMAT = 2,
NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS = ANATIVEWINDOW_QUERY_MIN_UNDEQUEUED_BUFFERS,
NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER = 4,
NATIVE_WINDOW_CONCRETE_TYPE = 5,
NATIVE_WINDOW_DEFAULT_WIDTH = ANATIVEWINDOW_QUERY_DEFAULT_WIDTH,
NATIVE_WINDOW_DEFAULT_HEIGHT = ANATIVEWINDOW_QUERY_DEFAULT_HEIGHT,
NATIVE_WINDOW_TRANSFORM_HINT = ANATIVEWINDOW_QUERY_TRANSFORM_HINT,
NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND = 9,
NATIVE_WINDOW_CONSUMER_USAGE_BITS = 10, /* deprecated */
NATIVE_WINDOW_STICKY_TRANSFORM = 11,
NATIVE_WINDOW_DEFAULT_DATASPACE = 12,
NATIVE_WINDOW_BUFFER_AGE = ANATIVEWINDOW_QUERY_BUFFER_AGE,
NATIVE_WINDOW_LAST_DEQUEUE_DURATION = 14,
NATIVE_WINDOW_LAST_QUEUE_DURATION = 15,
NATIVE_WINDOW_LAYER_COUNT = 16,
NATIVE_WINDOW_IS_VALID = 17,
NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT = 18,
NATIVE_WINDOW_CONSUMER_IS_PROTECTED = 19,
NATIVE_WINDOW_DATASPACE = 20,
NATIVE_WINDOW_MAX_BUFFER_COUNT = 21,
};
用於(*perform)()的標識各種操作的常量
deprecated標記的可能已被棄用或被其他功能函式取代
標記為“私有”的值應被視為框架私有。可以訪問ANativeWindow的HAL實現程式碼不應該使用這些,因為它可能無法與框架對ANativeWindow的使用進行正確的互動。
/* Valid operations for the (*perform)() hook. */
enum {
// clang-format off
NATIVE_WINDOW_SET_USAGE = ANATIVEWINDOW_PERFORM_SET_USAGE, /* deprecated */
NATIVE_WINDOW_CONNECT = 1, /* deprecated */
NATIVE_WINDOW_DISCONNECT = 2, /* deprecated */
NATIVE_WINDOW_SET_CROP = 3, /* private */
// 完整內容,請參考原始碼
}
用於NATIVE_WINDOW_[API_][DIS]CONNECT的引數
兩個函式native_window_api_connect 和 native_window_api_disconnect
/* parameter for NATIVE_WINDOW_[API_][DIS]CONNECT */
enum {
NATIVE_WINDOW_API_EGL = 1, // 使用OpenGL ES填充buffer後,EGL通過eglSwapBuffers入佇列這個buffer
NATIVE_WINDOW_API_CPU = 2, // 使用CPU填充buffer後,入佇列buffer
NATIVE_WINDOW_API_MEDIA = 3, // video解碼器填充buffer後,Stagefright入佇列這個buffer
NATIVE_WINDOW_API_CAMERA = 4,// 友camera HAL 入佇列buffer
};
用於NATIVE_WINDOW_SET_BUFFERS_TRANSFORM 影像轉換的引數
/* parameter for NATIVE_WINDOW_SET_BUFFERS_TRANSFORM */
enum {
NATIVE_WINDOW_TRANSFORM_FLIP_H = HAL_TRANSFORM_FLIP_H ,// 水平翻轉
NATIVE_WINDOW_TRANSFORM_FLIP_V = HAL_TRANSFORM_FLIP_V, // 垂直翻轉
NATIVE_WINDOW_TRANSFORM_ROT_90 = HAL_TRANSFORM_ROT_90, // 將源影像按時鐘方向旋轉90度
NATIVE_WINDOW_TRANSFORM_ROT_180 = HAL_TRANSFORM_ROT_180,// 將源影像按時鐘方向旋轉180度
NATIVE_WINDOW_TRANSFORM_ROT_270 = HAL_TRANSFORM_ROT_270, // 將源影像按時鐘方向旋轉270度
NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY = 0x08 // 通過對其顯示的螢幕進行逆變換來轉換源。
};
上述引數即用於如下這個函式,buffer顯示時就會按照我們設定的轉換型別進行翻轉、旋轉。
/*
* native_window_set_buffers_transform(..., int transform)
* All buffers queued after this call will be displayed transformed according
* to the transform parameter specified.
*/
static inline int native_window_set_buffers_transform(
struct ANativeWindow* window,
int transform)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_TRANSFORM,
transform);
}
用於NATIVE_WINDOW_SET_SCALING_MODE設定縮放模式的常量
/* parameter for NATIVE_WINDOW_SET_SCALING_MODE */
enum {
/* the window content is not updated (frozen) until a buffer of
* the window size is received (enqueued)
*/
NATIVE_WINDOW_SCALING_MODE_FREEZE = 0,
/* the buffer is scaled in both dimensions to match the window size */
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW = 1,
/* the buffer is scaled uniformly such that the smaller dimension
* of the buffer matches the window size (cropping in the process)
*/
NATIVE_WINDOW_SCALING_MODE_SCALE_CROP = 2,
/* the window is clipped to the size of the buffer's crop rectangle; pixels
* outside the crop rectangle are treated as if they are completely
* transparent.
*/
NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP = 3,
};
上述引數即用於如下這個函式
/*
* native_window_set_scaling_mode(..., int mode)
* All buffers queued after this call will be associated with the scaling mode
* specified.
*/
static inline int native_window_set_scaling_mode(
struct ANativeWindow* window,
int mode)
{
return window->perform(window, NATIVE_WINDOW_SET_SCALING_MODE,
mode);
}
Surface
Surface和ANativeWindow存在千絲萬縷的聯絡,Surface繼承了ANativeWindow,並對其中的功能做了具體實現。
ANativeWindow這個結構體中定義了大量的函式指標,這些函式指標指向了哪裡?或函式功能在哪裡?答案就在Surface中。
Surface的定義位於:/frameworks/native/libs/gui/include/gui/Surface.h
先看看它的宣告:
class Surface
: public ANativeObjectBase<ANativeWindow, Surface, RefBase>
{
......
}
ANativeObjectBase是一個模板類,作為輔助類將ANativeXXXX的物件型別轉換為C++的引用計數型別
template <typename NATIVE_TYPE, typename TYPE, typename REF,
typename NATIVE_BASE = android_native_base_t>
class ANativeObjectBase : public NATIVE_TYPE, public REF
{
我們結合上面這兩段程式碼來看,是不是很清晰了:
在Surface的定義中,NATIVE_TYPE==ANativeWindow , REF==RefBas ==> ANativeObjectBase 繼承了ANativeWindow
根據繼承的邏輯關係,很明顯Surface繼承了ANativeWindow
Surface中定義了很多函式介面,不過也有些規律。
♦ hook_*的函式
hook函式有10個,這些函式和ANativeWindow中定義的函式指標對應,hook鉤連一塊
他們是怎麼樣鉤連起來的呢?可以看/frameworks/native/libs/gui/Surface.cpp 中建構函式
Surface::Surface(const sp<IGraphicBufferProducer>& bufferProducer, bool controlledByApp,
const sp<IBinder>& surfaceControlHandle)
: .... {
// Initialize the ANativeWindow function pointers.
ANativeWindow::setSwapInterval = hook_setSwapInterval;
ANativeWindow::dequeueBuffer = hook_dequeueBuffer;
ANativeWindow::cancelBuffer = hook_cancelBuffer;
ANativeWindow::queueBuffer = hook_queueBuffer;
ANativeWindow::query = hook_query;
ANativeWindow::perform = hook_perform;
ANativeWindow::dequeueBuffer_DEPRECATED = hook_dequeueBuffer_DEPRECATED;
ANativeWindow::cancelBuffer_DEPRECATED = hook_cancelBuffer_DEPRECATED;
ANativeWindow::lockBuffer_DEPRECATED = hook_lockBuffer_DEPRECATED;
ANativeWindow::queueBuffer_DEPRECATED = hook_queueBuffer_DEPRECATED;
}
一目瞭然,Initialize the ANativeWindow function pointers. 初始化函式指標。
比如我們程式中如果呼叫ANativeWindow::query函式,即會呼叫實現具體功能的Surface::hook_query.
♦ dispatch*的函式
dispatch函式有46個,前面我們有講到perform函式對應的各種操作,都是會走到對應的dispatch函式中。
我們通過一個例子來說明下具體流程:Android 12(S) 圖形顯示系統 - 示例應用(二)
之前的demo中 ,比如有用到
// 3. set the ANativeWindow format
err = native_window_set_buffers_format(nativeWindow, PIXEL_FORMAT_RGBX_8888);
看!native_window_set_buffers_format的定義
static inline int native_window_set_buffers_format(
struct ANativeWindow* window,
int format)
{
return window->perform(window, NATIVE_WINDOW_SET_BUFFERS_FORMAT, format);
}
其中繼續呼叫 window->perform(),這個函式對應到了Surface::hook_perform
int Surface::hook_perform(ANativeWindow* window, int operation, ...) {
va_list args;
va_start(args, operation);
Surface* c = getSelf(window); // 型別轉換
int result;
// Don't acquire shared ownership of the interceptor mutex if we're going to
// do interceptor registration, as otherwise we'll deadlock on acquiring
// exclusive ownership.
if (!isInterceptorRegistrationOp(operation)) {
std::shared_lock<std::shared_mutex> lock(c->mInterceptorMutex);
if (c->mPerformInterceptor != nullptr) {
result = c->mPerformInterceptor(window, Surface::performInternal,
c->mPerformInterceptorData, operation, args);
va_end(args);
return result;
}
}
result = c->perform(operation, args);
va_end(args);
return result;
}
接著看! 呼叫c->perform(),流程到了Surface::perform
int Surface::perform(int operation, va_list args)
{
int res = NO_ERROR;
switch (operation) {
......
case NATIVE_WINDOW_SET_BUFFERS_FORMAT:
res = dispatchSetBuffersFormat(args);
break;
......
}
}
switch語句中判斷是哪種case(哪中操作),呼叫對應的dispatchXXX,在我們的例子中即呼叫dispatchSetBuffersFormat
int Surface::dispatchSetBuffersFormat(va_list args) {
PixelFormat format = va_arg(args, PixelFormat);
return setBuffersFormat(format);
}
私有方法Surface::setBuffersFormat 中來完成最終的工作。
通過上面這個例子應該就理清了 perform <--> dispatchXXX 的處理流程了
♦ 其它的函式和私有成員
Surface中還有很多函式和資料成員,它們提供了操作surface的介面或用於存surface的屬性資訊。
比如 寬、高、畫素格式等屬性資訊
BufferSlot mSlots[NUM_BUFFER_SLOTS];
uint32_t mReqWidth;
uint32_t mReqHeight;
PixelFormat mReqFormat;
uint64_t mReqUsage;
我們在此就不展開介紹了,後續講解中如有遇到會再解釋。
簡單小結下:ANativeWindow中定義很多函式指標成員變數,Surface繼承自ANativeWindow,當然那些函式指標成員變數也是屬於Surface了,Surface實現了各種功能函式,並且讓ANativeWindow中函式指標成員變數與實際功能函式建立關聯(hook)
window.h中有很多static函式,使用這些函式時就可以透過ANativeWindow呼叫到Surface中的功能了
繞啊繞,繞啊繞,為啥要這樣繞....
SurfaceControl
SurfaceControl 顧名思義是用於控制surface的一個類。他是如何進行控制的呢?且讓我們慢慢看....
還記得我們例子中如何建立surface的嗎?可以回頭再看看 Android 12(S) 圖形顯示系統 - 示例應用(二)
使用SurfaceComposerClient::createSurface 獲得了SurfaceControl物件,神奇吧!
sp<SurfaceControl> surfaceControl = surfaceComposerClient->createSurface(mName, resolution.getWidth(),
resolution.getHeight(), PIXEL_FORMAT_RGBA_8888,
ISurfaceComposerClient::eFXSurfaceBufferState,
/*parent*/ nullptr);
深入其中,一探究竟,createSurface做了什麼神奇操作呢?
sp<SurfaceControl> SurfaceComposerClient::createSurface(const String8& name, uint32_t w, uint32_t h,
PixelFormat format, uint32_t flags,
const sp<IBinder>& parentHandle,
LayerMetadata metadata,
uint32_t* outTransformHint) {
sp<SurfaceControl> s;
createSurfaceChecked(name, w, h, format, &s, flags, parentHandle, std::move(metadata),
outTransformHint);
return s;
}
繼續去呼叫 createSurfaceChecked
status_t SurfaceComposerClient::createSurfaceChecked(const String8& name, uint32_t w, uint32_t h,
PixelFormat format,
sp<SurfaceControl>* outSurface, uint32_t flags,
const sp<IBinder>& parentHandle,
LayerMetadata metadata,
uint32_t* outTransformHint) {
sp<SurfaceControl> sur;
status_t err = mStatus;
if (mStatus == NO_ERROR) {
sp<IBinder> handle;
sp<IGraphicBufferProducer> gbp;
uint32_t transformHint = 0;
int32_t id = -1;
err = mClient->createSurface(name, w, h, format, flags, parentHandle, std::move(metadata),
&handle, &gbp, &id, &transformHint);
if (outTransformHint) {
*outTransformHint = transformHint;
}
ALOGE_IF(err, "SurfaceComposerClient::createSurface error %s", strerror(-err));
if (err == NO_ERROR) {
*outSurface =
new SurfaceControl(this, handle, gbp, id, w, h, format, transformHint, flags);
}
}
return err;
}
真相已浮現,看到 new SurfaceControl 了
在前面文章
Android 12(S) 圖形顯示系統 - createSurface的流程(五)Android 12(S) 圖形顯示系統 - BufferQueue/BLASTBufferQueue之初識(六)我們詳細分析過createSurface的流程,還有SurfaceControl中的資訊,我們再貼一下資訊:
原始碼位置: /frameworks/native/libs/gui/include/gui/SurfaceControl.h
class SurfaceControl : public RefBase
...
private:
sp<SurfaceComposerClient> mClient; // 應用建立的SurfaceComposerClient物件指標,裡面封裝了和SurfaceFlinger通訊的Binder客戶端
sp<IBinder> mHandle; // 應用中顯式建立的layer handle,這是個BufferStateLayer 它作為parent
sp<IGraphicBufferProducer> mGraphicBufferProducer; // 這個貌似沒有實際用了?
mutable Mutex mLock;
mutable sp<Surface> mSurfaceData; //
mutable sp<BLASTBufferQueue> mBbq; // BLASTBufferQueue物件例項
mutable sp<SurfaceControl> mBbqChild; // child layer,它會和mBbq相關聯
int32_t mLayerId; // layer id
uint32_t mTransformHint; // 方向
uint32_t mWidth; // surface 寬
uint32_t mHeight; // surface 高
PixelFormat mFormat;
uint32_t mCreateFlags; // createSurface的標誌資訊
};
SurfaceControl中持有Surface:mSurfaceData, 持有BufferQueue:mBbq 這就是控制的基礎
總結一張圖
3 小結
ANativeWindow/Surface/SurfaceControl的基本就介紹這些了,主要是瞭解這些類內有什麼內容,可以使用他們做些什麼操作,以及他們與其它圖形元件的關係。