There are n
gas stations along a circular route, where the amount of gas at the ith
station is gas[i]
.
You have a car with an unlimited gas tank and it costs cost[i]
of gas to travel from the ith
station to its next (i + 1)th
station. You begin the journey with an empty tank at one of the gas stations.
Given two integer arrays gas
and cost
, return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1
. If there exists a solution, it is guaranteed to be unique
Example 1:
Input: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
Output: 3
Explanation:
Start at station 3 (index 3) and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 4. Your tank = 4 - 1 + 5 = 8
Travel to station 0. Your tank = 8 - 2 + 1 = 7
Travel to station 1. Your tank = 7 - 3 + 2 = 6
Travel to station 2. Your tank = 6 - 4 + 3 = 5
Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3.
Therefore, return 3 as the starting index.
Example 2:
Input: gas = [2,3,4], cost = [3,4,3]
Output: -1
Explanation:
You can't start at station 0 or 1, as there is not enough gas to travel to the next station.
Let's start at station 2 and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 0. Your tank = 4 - 3 + 2 = 3
Travel to station 1. Your tank = 3 - 3 + 3 = 3
You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3.
Therefore, you can't travel around the circuit once no matter where you start.
Constraints:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
這道題需要求一個起始的站點k,從而保證從k站點開始,能夠迴圈一圈的遍歷所有station。這裡有兩點很直接的point:
1、如果當前station的 cost>gas那麼鐵定不能將該站點作為起始站點。
2、如果所有站點都能遍歷一遍,那麼gas的累加和一定是大於等於cost的累加和。
對於這道題我首先想到了一個簡單的方法,迴圈遍歷陣列,讓每一個站點k作為起始站點試一遍,然後判斷能否跑到下一個站點,如果全部遍歷一遍都可以則輸出k,否則選擇下一個站點k+1作為起始,重複操作。很明顯這樣有兩層迴圈,時間複雜度為o(n^2),直覺告訴我鐵定不能oc。。。。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
// 暴力發就是每個gas station 進行檢索一次
int n=gas.size();
int len=2*n-1;
int index=0;
int flag=1;
while(index<n){
int res=0;
flag=1;
for(int i=index;i<=len;++i){
res=res-cost[i%n]+gas[i%n];
if(res<0) {
flag=0;
break;
}
}
if(flag) break;
index++;
}
return flag==1? index:-1;
}
};
倒在最後一個超長的test了。
那麼如何優化呢,o(n^2)的複雜度指定不行的。後面看了大佬的程式碼才恍然大悟。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
// 暴力發就是每個gas station 進行檢索一次
int tot_gas=0,cur_gas=0,k=0;
for(int i=0;i<gas.size();++i){
tot_gas+=gas[i]-cost[i];
cur_gas+=gas[i]-cost[i];
if(cur_gas<0){
cur_gas=0;
k=i+1; //這行程式碼很關鍵
}
}
return tot_gas>=0? k:-1;
}
};
這裡維護 tank 總的 tot_gas,以及當前 tank 的 cur_gas,更新方式基本相同 tot_gas+=gas[i]-cost[i];,但注意一點,當 cur_gas<0 時表明汽車無法到達該station,同時也表明從上一個起點 k 到當前的 station i 之間的任何 station 都無法作為起點進行迴圈,下一個起點得是 k=i+1(very important)。
為啥呢,假設從 起點 k=0 開始,當從 station i-1=》station i 時 cur_gas[i]<0 , 可以證明從 station 0~i, 這些結點都無法作為起點。我的思考如下:
1. cur_gas[i]<0 ,可以得到 對於當前 station i :cost[i]>gas[i],station i 無法作為起點。
2.假設能從 station 0到 station i-1,可以得到從 station 0作為起始的cur_gas[i-1] 一定是大於以station i-1 作為起始的cur_gas[i-1], 因為前面能到達的話,會累加很多之前正的cur_gas,這樣就可以證明,如果從station 0都無法到達station i=》從 station i-1 也無法到達 station i 。所以無論以 0~i 哪個station 作為起點,計算得到的cur_gas[i] 都必將為為負值
3.則下一個起點必然是station i+1
4.最後判斷一下tot_gas, 如果能夠迴圈檢索,必然總的tot_gas為正值。
該程式碼直接複雜度直接為o(n),賊牛逼。