1. 概述
我在《大地經緯度座標與地心地固座標的的轉換》這篇文章中已經論述了地心座標系的概念。我們知道,基於地心座標系的座標都是很大的值,這樣的值是不太方便進行空間計算的,所以很多時候可以選取一個站心點,將這個很大的值變換成一個較小的值。以圖形學的觀點來看,地心座標可以看作是世界座標,站心座標可以看作區域性座標。
站心座標系以一個站心點為座標原點,當把座標系定義為X軸指東、Y軸指北,Z軸指天,就是ENU(東北天)站心座標系。這樣,從地心地固座標系轉換成的站心座標系,就會成為一個符合常人對地理位置認知的區域性座標系。同時,只要站心點位置選的合理(通常可選取地理表達區域的中心點),表達的地理座標都會是很小的值,非常便於空間計算。
2. 原理
令選取的站心點為P,其大地經緯度座標為\((B_p,L_p,H_p)\),對應的地心地固座標系為\((X_p,Y_p,Z_p)\)。地心地固座標系簡稱為ECEF,站心座標系簡稱為ENU。
2.1. 平移
通過第一節的圖可以看出,ENU要轉換到ECEF,一個很明顯的圖形操作是平移變換,將站心移動到地心。根據站心點P在地心座標系下的座標\((X_p,Y_p,Z_p)\),可以很容易推出ENU轉到ECEF的平移矩陣:
反推之,ECEF轉換到ENU的平移矩陣就是T的逆矩陣:
2.2. 旋轉
另外一個需要進行的圖形變換是旋轉變換,其旋轉變換矩陣根據P點所在的經度L和緯度B確定。這個旋轉變換有點難以理解,需要一定的空間想象能力,但是可以直接給出如下結論:
- 當從ENU轉換到ECEF時,需要先旋轉再平移,旋轉是先繞X軸旋轉\((\frac{pi}{2}-B)\),再繞Z軸旋轉\((\frac{pi}{2}+L)\)
- 當從ECEF轉換到ENU時,需要先平移再旋轉,旋轉是先繞Z軸旋轉\(-(\frac{pi}{2}+L)\),再繞X軸旋轉\(-(\frac{pi}{2}-B)\)
根據我在《WebGL簡易教程(五):圖形變換(模型、檢視、投影變換)》提到的旋轉變換,繞X軸旋轉矩陣為:
繞Z軸旋轉矩陣為:
從ENU轉換到ECEF的旋轉矩陣為:
根據三角函式公式:
有:
將(2)、(3)帶入(1)中,則有:
而從ECEF轉換到ENU的旋轉矩陣為:
旋轉矩陣是正交矩陣,根據正交矩陣的性質:正交矩陣的逆矩陣等於其轉置矩陣,那麼可直接得:
2.3. 總結
將上述公式展開,可得從ENU轉換到ECEF的圖形變換矩陣為:
而從ECEF轉換到ENU的圖形變換矩陣為:
3. 實現
接下來用程式碼實現這個座標轉換,選取一個站心點,以這個站心點為原點,獲取某個點在這個站心座標系下的座標:
#include <iostream>
#include <eigen3/Eigen/Eigen>
#include <osgEarth/GeoData>
using namespace std;
const double epsilon = 0.000000000000001;
const double pi = 3.14159265358979323846;
const double d2r = pi / 180;
const double r2d = 180 / pi;
const double a = 6378137.0; //橢球長半軸
const double f_inverse = 298.257223563; //扁率倒數
const double b = a - a / f_inverse;
//const double b = 6356752.314245; //橢球短半軸
const double e = sqrt(a * a - b * b) / a;
void Blh2Xyz(double &x, double &y, double &z)
{
double L = x * d2r;
double B = y * d2r;
double H = z;
double N = a / sqrt(1 - e * e * sin(B) * sin(B));
x = (N + H) * cos(B) * cos(L);
y = (N + H) * cos(B) * sin(L);
z = (N * (1 - e * e) + H) * sin(B);
}
void Xyz2Blh(double &x, double &y, double &z)
{
double tmpX = x;
double temY = y ;
double temZ = z;
double curB = 0;
double N = 0;
double calB = atan2(temZ, sqrt(tmpX * tmpX + temY * temY));
int counter = 0;
while (abs(curB - calB) * r2d > epsilon && counter < 25)
{
curB = calB;
N = a / sqrt(1 - e * e * sin(curB) * sin(curB));
calB = atan2(temZ + N * e * e * sin(curB), sqrt(tmpX * tmpX + temY * temY));
counter++;
}
x = atan2(temY, tmpX) * r2d;
y = curB * r2d;
z = temZ / sin(curB) - N * (1 - e * e);
}
void TestBLH2XYZ()
{
//double x = 113.6;
//double y = 38.8;
//double z = 100;
//
//printf("原大地經緯度座標:%.10lf\t%.10lf\t%.10lf\n", x, y, z);
//Blh2Xyz(x, y, z);
//printf("地心地固直角座標:%.10lf\t%.10lf\t%.10lf\n", x, y, z);
//Xyz2Blh(x, y, z);
//printf("轉回大地經緯度座標:%.10lf\t%.10lf\t%.10lf\n", x, y, z);
double x = -2318400.6045575836;
double y = 4562004.801366804;
double z = 3794303.054150639;
//116.9395751953 36.7399177551
printf("地心地固直角座標:%.10lf\t%.10lf\t%.10lf\n", x, y, z);
Xyz2Blh(x, y, z);
printf("轉回大地經緯度座標:%.10lf\t%.10lf\t%.10lf\n", x, y, z);
}
void CalEcef2Enu(Eigen::Vector3d& topocentricOrigin, Eigen::Matrix4d& resultMat)
{
double rzAngle = -(topocentricOrigin.x() * d2r + pi / 2);
Eigen::AngleAxisd rzAngleAxis(rzAngle, Eigen::Vector3d(0, 0, 1));
Eigen::Matrix3d rZ = rzAngleAxis.matrix();
double rxAngle = -(pi / 2 - topocentricOrigin.y() * d2r);
Eigen::AngleAxisd rxAngleAxis(rxAngle, Eigen::Vector3d(1, 0, 0));
Eigen::Matrix3d rX = rxAngleAxis.matrix();
Eigen::Matrix4d rotation;
rotation.setIdentity();
rotation.block<3, 3>(0, 0) = (rX * rZ);
//cout << rotation << endl;
double tx = topocentricOrigin.x();
double ty = topocentricOrigin.y();
double tz = topocentricOrigin.z();
Blh2Xyz(tx, ty, tz);
Eigen::Matrix4d translation;
translation.setIdentity();
translation(0, 3) = -tx;
translation(1, 3) = -ty;
translation(2, 3) = -tz;
resultMat = rotation * translation;
}
void CalEnu2Ecef(Eigen::Vector3d& topocentricOrigin, Eigen::Matrix4d& resultMat)
{
double rzAngle = (topocentricOrigin.x() * d2r + pi / 2);
Eigen::AngleAxisd rzAngleAxis(rzAngle, Eigen::Vector3d(0, 0, 1));
Eigen::Matrix3d rZ = rzAngleAxis.matrix();
double rxAngle = (pi / 2 - topocentricOrigin.y() * d2r);
Eigen::AngleAxisd rxAngleAxis(rxAngle, Eigen::Vector3d(1, 0, 0));
Eigen::Matrix3d rX = rxAngleAxis.matrix();
Eigen::Matrix4d rotation;
rotation.setIdentity();
rotation.block<3, 3>(0, 0) = (rZ * rX);
//cout << rotation << endl;
double tx = topocentricOrigin.x();
double ty = topocentricOrigin.y();
double tz = topocentricOrigin.z();
Blh2Xyz(tx, ty, tz);
Eigen::Matrix4d translation;
translation.setIdentity();
translation(0, 3) = tx;
translation(1, 3) = ty;
translation(2, 3) = tz;
resultMat = translation * rotation;
}
void TestXYZ2ENU()
{
double L = 116.9395751953;
double B = 36.7399177551;
double H = 0;
cout << fixed << endl;
Eigen::Vector3d topocentricOrigin(L, B, H);
Eigen::Matrix4d wolrd2localMatrix;
CalEcef2Enu(topocentricOrigin, wolrd2localMatrix);
cout << "地心轉站心矩陣:" << endl;
cout << wolrd2localMatrix << endl<<endl;
cout << "站心轉地心矩陣:" << endl;
Eigen::Matrix4d local2WolrdMatrix;
CalEnu2Ecef(topocentricOrigin, local2WolrdMatrix);
cout << local2WolrdMatrix << endl;
double x = 117;
double y = 37;
double z = 10.3;
Blh2Xyz(x, y, z);
cout << "ECEF座標(世界座標):";
Eigen::Vector4d xyz(x, y, z, 1);
cout << xyz << endl;
cout << "ENU座標(區域性座標):";
Eigen::Vector4d enu = wolrd2localMatrix * xyz;
cout << enu << endl;
}
void TestOE()
{
double L = 116.9395751953;
double B = 36.7399177551;
double H = 0;
osgEarth::SpatialReference *spatialReference = osgEarth::SpatialReference::create("epsg:4326");
osgEarth::GeoPoint centerPoint(spatialReference, L, B, H);
osg::Matrixd worldToLocal;
centerPoint.createWorldToLocal(worldToLocal);
cout << fixed << endl;
cout << "地心轉站心矩陣:" << endl;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
printf("%lf\t", worldToLocal.ptr()[j * 4 + i]);
}
cout << endl;
}
cout << endl;
osg::Matrixd localToWorld;
centerPoint.createLocalToWorld(localToWorld);
cout << "站心轉地心矩陣:" << endl;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
printf("%lf\t", localToWorld.ptr()[j * 4 + i]);
}
cout << endl;
}
cout << endl;
double x = 117;
double y = 37;
double z = 10.3;
osgEarth::GeoPoint geoPoint(spatialReference, x, y, z);
cout << "ECEF座標(世界座標):";
osg::Vec3d out_world;
geoPoint.toWorld(out_world);
cout << out_world.x() <<'\t'<< out_world.y() << '\t' << out_world.z() << endl;
cout << "ENU座標(區域性座標):";
osg::Vec3d localCoord = worldToLocal.preMult(out_world);
cout << localCoord.x() << '\t' << localCoord.y() << '\t' << localCoord.z() << endl;
}
int main()
{
//TestBLH2XYZ();
cout << "使用Eigen進行轉換實現:" << endl;
TestXYZ2ENU();
cout <<"---------------------------------------"<< endl;
cout << "通過OsgEarth進行驗證:" << endl;
TestOE();
}
這個示例先用Eigen矩陣庫,計算了座標轉換需要的矩陣和轉換結果;然後通過osgEarth進行了驗證,兩者的結果基本一致。執行結果如下: