摘要
本篇用halcon和opencv分別實現對於複雜背景下的缺陷提取實戰
如下圖,背景很複雜,周圍劃痕都是正常區域。要提取中間小塊的黑色區域(缺陷區域)。單純用頻域濾波和閾值提取,效果一般。都會把周圍的劃痕提取出來。
Halcon實現
思路:
通過中值濾波後,對影像進行動態閾值提取細化缺陷部分,結合開運算,閉運算提取缺陷。
read_image (Image, 'D:/opencv練習圖片/複雜背景提取缺陷.jpg') dev_set_line_width (3) threshold (Image, Region, 30, 255) reduce_domain (Image, Region, ImageReduced) mean_image (ImageReduced, ImageMean, 150, 150) dyn_threshold (ImageReduced, ImageMean, SmallRaw, 37, 'dark') opening_circle (SmallRaw, RegionOpening,4.5) closing_circle (RegionOpening, RegionClosing, 7) connection (RegionClosing, ConnectedRegions) dev_set_color ('red') dev_display (Image) dev_set_draw ('margin') dev_display (ConnectedRegions)
Opencv實現
實現方法與思路:
- 原圖轉灰度圖後使用核大小201(奇數)做中值濾波;
- 灰度圖與濾波影像做差,閾值處理
- 形態學進一步提取缺陷
- 輪廓查詢,通過面積篩選缺陷,顯示
int main(int argc, char** argv) { Mat src = imread("D:/opencv練習圖片/複雜背景提取缺陷.jpg"); imshow("輸入影像", src); Mat gray, gray_mean,dst,binary1, binary2, binary; cvtColor(src, gray, COLOR_BGR2GRAY); medianBlur(gray, gray_mean, 201); imshow("中值濾波", gray_mean); addWeighted(gray, -1, gray_mean, 1, 0, dst); imshow("做差", dst); //閾值提取 threshold(dst, binary1, 10, 255, THRESH_BINARY|THRESH_OTSU); imshow("二值化", binary1); Mat src_open, src_close; //形態學 Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(7, 7), Point(-1, -1)); morphologyEx(binary1, src_open, MORPH_OPEN, kernel, Point(-1, -1)); imshow("開運算", src_open); morphologyEx(src_open, src_close, MORPH_CLOSE, kernel, Point(-1, -1)); imshow("閉運算", src_close); vector<vector<Point>>contours; findContours(src_close, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE, Point()); for (int i = 0; i < contours.size(); i++) { float area = contourArea(contours[i]); cout << area << endl; if (area > 1000) { drawContours(src, contours, i, Scalar(0, 0, 255), 2, 8); } } imshow("結果", src); waitKey(0); return 0; }
這裡巧用了addWeighted函式進行做差,得出影像:
然後二值化,尋找輪廓,篩選得出缺陷輪廓。