密碼學系列之:feistel cipher
簡介
feistel cipher也叫做Luby–Rackoff分組密碼,是用來構建分組加密演算法的對稱結構。它是由德籍密碼學家Horst Feistel在IBM工作的時候發明的。feistel cipher也被稱為Feistel網路。
很多分組加密演算法都是在feistel cipher的基礎上發展起來的,比如非常有名的DES演算法。
在feistel cipher中,加密和解密的操作非常相似,通常需要進行多輪加密和解密操作。
Feistel網路的原理
Feistel網路中會用到一個round function也叫做輪函式,這個函式接收兩個輸入引數,分別是分組資料(原始資料的一半)和子key,然後生成和分組資料同樣長度的資料。
然後使用上一輪生成的資料和原始資料的另一半進行XOR異或操作,作為下一輪輪函式的輸入。
就這樣一輪一輪進行下去最後生成加密過後的資料。
解密的流程和加密的流程是類似的,只不過把加密的操作反過來。
Feistel網路的輪數可以任意增加。不論多少輪都可以正常解密。
解密與輪函式f無關,輪函式f也不需要有逆函式。輪函式可以設計得足夠複製。
加密和解密可以使用完全相同的結構來實現。從上面我們講到的可以看到,加密和解密其實是沒有什麼區別的。
Feistel網路的例子
我們用一個圖的方式來介紹一下Feistel的工作流程:
上圖中F表示的就是round function也就是輪函式。
K0,K1,K2...,Kn表示的是子key,分別作為各輪的輸入。
原始資料被分成了左右兩邊相等的部分,(L0,R0)
每一輪都會進行下面的操作:
-
Li+1 = Ri
-
Ri+1 = Li XOR F(Ri,Ki)
最後的加密出的結果就是(Ri+1,Li+1)
解密的過程是加密過程的逆序,每一輪解密都會進行下面的操作:
-
Ri = Li+1
-
Li = Ri+1 XOR F(Li+1,Ki)
最終得到我們的原始資料(R0,L0)
Feistel網路的理論研究
Michael Luby 和 Charles Rackoff 證明了如果輪函式是使用Ki為種子的密碼安全的偽隨機函式,那麼經過三輪操作之後,生成的分組密碼就已經是偽隨機排列了。經過四輪操作可以生成“強”偽隨機排列。
什麼是偽隨機數呢?
考慮一下如果在計算機中生成隨機數,因為計算機中的資料是由0和1組成的,所有的資料都是確定的,要麼是0要麼是1,所以計算機程式並不能生成真正的隨機數。
如果要讓計算機來生成隨機數,通常的做法就是將輸入通過一定的演算法函式進行計算,從而得到處理過後的數字。
如果這個演算法函式是確定的,也就是說同樣的輸入可以得到同樣的輸出,那麼這個數就不是隨機產生的,這個數就被稱為偽隨機數。
偽隨機數是用確定性的演算法計算出來自[0,1]均勻分佈的隨機數序列。並不真正的隨機,但具有類似於隨機數的統計特徵,如均勻性、獨立性等。
因為Luby和Rackoff的研究非常重要,所以Feistel密碼也稱為Luby–Rackoff密碼。
Feistel網路的擴充
除了我們之前介紹過的DES之外,很多演算法都用到了Feistel網路結構,比如Blowfish,Twofish等等。
因為Feistel網路的對稱性質和簡單的操作,使得通過硬體的方式來實現Feistel網路變得非常簡單,所以Feistel網路的應用非常的廣泛。
本文已收錄於 http://www.flydean.com/feistel-cipher/
最通俗的解讀,最深刻的乾貨,最簡潔的教程,眾多你不知道的小技巧等你來發現!
歡迎關注我的公眾號:「程式那些事」,懂技術,更懂你!