生成器
利用迭代器,我們可以在每次迭代獲取資料(通過next()方法)時按照特定的規律進行生成。但是我們在實現一個迭代器時,關於當前迭代到的狀態需要我們自己記錄,進而才能根據當前狀態生成下一個資料。
為了達到記錄當前狀態,並配合next()函式進行迭代使用,我們可以採用更簡便的語法,即生成器(generator)。生成器是一類特殊的迭代器。
建立生成器方法1
要建立一個生成器,有很多種方法。第一種方法很簡單,只要把一個列表生成式的 [ ] 改成 ( )
>>> L = [x**2 for x in range(5)]
>>> L
[0, 1, 4, 9, 16]
>>> G = (x**2 for x in range(5))
>>> G
<generator object <genexpr> at 0x7fb63d218750>
建立 L 和 G 的區別僅在於最外層的 [ ] 和 ( ) , L 是一個列表,而 G 是一個生成器。我們可以直接列印出列表L的每一個元素,而對於生成器G,我們可以按照迭代器的使用方法來使用,即可以通過next()函式、for迴圈、list()等方法使用。
>>> next(G)
0
>>> next(G)
1
>>> next(G)
4
>>> next(G)
9
>>> next(G)
16
>>> next(G)
Traceback (most recent call last):
File "<pyshell#39>", line 1, in <module>
next(G)
StopIteration
>>> G = ( x**2 for x in range(5))
>>> for x in G:
print(x)
建立生成器方法2
generator非常強大。如果推算的演算法比較複雜,用類似列表生成式的 for 迴圈無法實現的時候,還可以用函式來實現。
就像之前提到的斐波那切數列
注意,在用迭代器實現的方式中,我們要藉助幾個變數(n、current、num1、num2)來儲存迭代的狀態。現在我們用生成器來實現一下。
>>> def fib(n):
current = 0
num1, num2 = 0, 1
while current < n:
num = num1
num1, num2 = num2, num1 + num2
current += 1
yield num
return '完成'
>>> F = fib(5)
>>> next(F)
0
>>> next(F)
1
>>> next(F)
1
>>> next(F)
2
>>> next(F)
3
>>> next(F)
Traceback (most recent call last):
File "<pyshell#80>", line 1, in <module>
next(F)
StopIteration: 完成
在使用生成器實現的方式中,我們將原本在迭代器__next__
方法中實現的基本邏輯放到一個函式中來實現,但是將每次迭代返回數值的return換成了yield,此時新定義的函式便不再是函式,而是一個生成器了。
簡單來說:只要在def中有yield關鍵字的 就稱為 生成器
此時按照呼叫函式的方式( 案例中為F = fib(5) )使用生成器就不再是執行函式體了,而是會返回一個生成器物件( 案例中為F ),然後就可以按照使用迭代器的方式來使用生成器了。
>>> for n in fib(5):
print(n)
0
1
1
2
3
>>>
但是用for迴圈呼叫generator時,發現拿不到generator的return語句的返回值。如果想要拿到返回值,必須捕獲StopIteration
錯誤,返回值包含在StopIteration的value中:
>>> g = fib(5)
>>> while True:
try:
x = next(g)
print(f"value:{x}")
except StopIteration as e:
print(f"生成器返回值:{e.value}")
break
value:0
value:1
value:1
value:2
value:3
生成器返回值:完成
總結
- 使用了yield關鍵字的函式不再是函式,而是
生成器
。(使用了yield的函式就是生成器) - yield關鍵字有兩點作用:
- 儲存當前執行狀態(斷點),然後暫停執行,即將生成器(函式)掛起
- 將yield關鍵字後面表示式的值作為返回值返回,此時可以理解為起到了return的作用
- 可以使用
next()
函式讓生成器從斷點處繼續執行,即喚醒生成器(函式) - Python3中的生成器可以使用return返回最終執行的返回值,而Python2中的生成器不允許使用return返回一個返回值(即可以使用return從生成器中退出,但return後不能有任何表示式)。
使用send喚醒
我們除了可以使用next()
函式來喚醒生成器繼續執行外,還可以使用send()
函式來喚醒執行。使用send()函式的一個好處是可以在喚醒的同時向斷點處傳入一個附加資料。
例子:執行到yield時,gen函式作用暫時儲存,返回i的值; temp接收下次c.send("python")
,send傳送過來的值,c.next()等價c.send(None)
>>> def gen():
i = 0
while i < 5:
temp = yield i
print(temp)
i += 1
使用send
>>> f = gen()
>>> next(f)
0
>>> f.send('haha')
haha
1
>>> next(f)
None
2
>>> f.send('haha')
haha
3
>>>